FOFB system for PETRA IV

"The importance of the simulations and analysis by TEMF"

Sven Pfeiffer for the WP2.08 team

Hamburg, 03.12.2024

Outline

- 1. Introduction
- 2. Feedback basics
- 3. PETRA IV design
- 4. Next steps
- 5. Summary

Introduction

FOFB system overview & topology

- GLObal feedback node and LOCal feedback
 nodes for data processing
- Number of inputs (BPM) \approx 1576
- Number of fast correctors ≈ 520

FOFB system: a cross-directional problem

A two dimensional control problem

- The goal is to maintain the beam position throughout the ring → Spatial domain
- **Over time** → Temporal domain

$$G(\mathbf{s}) = \begin{pmatrix} r_{11}G(s)_{11} & \cdots & r_{1n}G(s)_{1n} \\ \vdots & \ddots & \vdots \\ r_{m1}G(s)_{m1} & \cdots & r_{mn}G(s)_{mn} \end{pmatrix}$$

with $r_{mn} = \frac{\sqrt{\beta_m(z)\beta_n(z)}}{2\pi Q} \cos(\pi Q - |\varphi_m(z) - \varphi_n(z)|)$

• All corrector channels should have identical temporal response

$$\mathbf{G(s)} = G(s)\mathbf{R} \longrightarrow \mathbf{C(s)} = C(s)\mathbf{R}^+$$

2 step simulation

- Dynamical system at 1 location with all TFs
 - Worst case scenario \rightarrow best case for MIMO
- Spatial (MIMO) system with main dynamics

FOFB system

SISO simulation

- Subsystems based on PETRA IV design
- Disturbance spectra approximated with measurement at PIII

FOFB system **SISO simulation**

- Subsystems based on PETRA IV design
- Disturbance spectra ٠ approximated with measurement at PIIL
- PI controller optimized ٠ for disturbance rejection
 - Goal: 1kHz •
- PI controller optimized • for reference tracking
 - Integration of experiments (photon diagnostics)

"One page feedback controls for dynamical systems"

Systems

- G(s) ... system model
- C(s) ... controller

Signals

- r ... reference
- n ... noise (detector)
 Inputs
- $d_y \dots$ disturbance to y
- y ... output signal (to be regulated)
- e ... error signal (r-y)

"One page feedback controls for dynamical systems"

Systems

- G(s) ... system model
- C(s) ... controller

Signals

- r ... reference
- n ... noise (detector)
 Inputs
- d_y ... disturbance to y
- y ... output signal (to be regulated)
- e ... error signal (r-y)

Closed-loop transfer function

$$y = \frac{GC}{1+GC}(r-n) + \frac{1}{1+GC}d_y$$

Complementary sensitivity function

 $T = \frac{GC}{1 + GC}$

Coupling S+T=1

Sensitivity function

+GC

S =

"One page feedback controls for dynamical systems"

Systems

- G(s) ... system model
- C(s) ... controller

Signals

- r ... reference
- n ... noise (detector)
 Inputs
- d_y ... disturbance to y
- y ... output signal (to be regulated)
- e ... error signal (r-y)

Closed-loop transfer function

$$y = \frac{GC}{1 + GC}(r - n) + \frac{1}{1 + GC}d_y$$

Complementary sensitivity function

Sensitivity function

 $S = \frac{1}{1 + GC}$

$$T = \frac{GC}{1+GC}$$

Coupling
$$S+T=1$$

Conflicting goals:

- **S** = **0** for disturbance rejection
- T = 1 for reference tracking
- T = 0 for noise rejection

Typically:

- High frequency noise signal n
- Low frequency disturbance d
- Low frequency reference signal r

Choose:

S(0) =small; $S(\infty) = 1$ T(0) = 1; $T(\infty) =$ small

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs

• PI controller

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs

• PI controller

 Increase of FB gain to increase closed loop bandwidth

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs

• PI controller

 Increase of FB gain to increase closed loop bandwidth

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs

• PI controller

 From global to local regulation (loop delay reduction)

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs to 40µs

- PI controller
- From global to local regulation (loop delay reduction)

Example global / local control

Example system G(s)

- Low-pass characteristic with bandwidth of 10kHz
- Delay of 80µs to 40µs

- PI controller
- From global to local regulation (loop delay reduction)

Conclusion

 Frequency characteristic and loop delay are important tuning parameters during the system design!

Summary and adding filter functions

Global feedbacks

Fixed loop delay •

Both feedbacks share the analog drive part

- Requires proper and well understood HW design
- Pushed corner frequencies well above 1kHz for all components
- \rightarrow Enough margin for faster reactions (>1kHz) ٠

Local feedbacks

- Reduced loop delay
- Fast diagnostics

Frequency domain shaping filters

- Equalize transfer characteristics ٠
 - Extremely important when going to mode space, e.g. multiple correctors to control single BPM
- Example magnet (~ Hz corner frequency) .

3. PETRA IV design

Design parameters

Goal to study and optimize the fast regulation chain

→ Cross-work package (WP) topic for PETRA IV

Prototype – PCA (fast corrector)

Slide from last TAC (Matthias Thede)

- Prototype in operation
 - Yoke manufactured in house, coils purchased externally
 - 1 mm lamella thickness steal M1400-100
- First DC measurements done
- Magnet is very short (yoke 86mm)
 - Alignment of the hall sensor is challenging
- Complex mechanical design

TEMF simulations

Yoke variations

- 1st prototype magnet with PowerCore 1400 and 1mm lamination
 - 3kHz with -10deg.
- 2nd prototype magnet with PowerCore 1400 and 0.3mm lamination
 - 30kHz with -10deg.

First order system Fract

Fractional order characteristics

• All subsystems in full simulation approximated by first or higher order

Modelling

 Assumption: worst case scenario with minimum phase margin in feedback

Fractional order system

... is a dynamical system that can be • modeled by a fractional differential equation containing derivatives of non-integer order ...

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\sum_{k=0}^{n} b_k s^{\beta_k}}{\sum_{k=0}^{m} a_k s^{\alpha_k}}$$

Frequency domain shaping filter

→ Very difficult for fractional order characteristics → Master student
 (TUHH) TUHH
 Hamburg

University of Technology

Fractional order characteristics

First order fractional system

$$G(s^{0.44}) = \frac{1}{0.0023 \cdot s^{0.44} + 1}$$

4. Next steps

Further simulations by TEMF – side project

As part of master thesis

Different shapes as dipoles for standalone AC part

- 500µrad (combined functioning AC and DC)
- 50µrad (AC only)

Goal:

- **Equalize** the octupole like **frequency dependent transfer function** in magnitude and phase with a dipole magnet
 - Main focus on fractional order characteristics → uncorrectable with low order digital filters
 - Use of standalone AC corrector in the cells (2V correctors) and/or different type of magnets in long straights with larger VC diameter
 - Frequency dependent field quality and coupling computation of quadrupole like design (SIRIUS)

Courtesy: J.M. Christmann

Further simulations by TEMF – side project

As part of master thesis

Different shapes as dipoles for standalone AC part

- 500µrad (combined functioning AC and DC)
- 50µrad (AC only)

Goal:

- **Equalize** the octupole like **frequency dependent transfer function** in magnitude and phase with a dipole magnet
 - Main focus on fractional order characteristics → uncorrectable with low order digital filters
 - Use of standalone AC corrector in the cells (2V correctors) and/or different type of magnets in long straights with larger VC diameter
 - Frequency dependent field quality and coupling computation of quadrupole like design (SIRIUS)

Alternative fast corrector magnet:

- Place 2 dipoles nearby and compute the frequency dependent
 - coupling between H and V field → usable for feedback?
 - field along the longitudinal axis → coupling strength to nearby devices?

Similar scheme as proposed for DESY IV

Courtesy: J.M. Christmann

water connection (stainless steel)

BPM

(stainless steel)

brazing

flange part (copper CuCr1Zr)

Summary

Consideration of the system design right from the start

... cables, magnet PS, BPM (noise), disturbances, ...

 \rightarrow Vacuum chambers (round, elliptical, key-hole, CU-SS transition, thickness, coating, ...)

 \rightarrow Magnet (Integrated field, frequency characteristic. multipoles, laminations, losses, ...)

Well recognized at other labs!

Diamond-II (UK) released a decided vacuum system for changes after a presentation of your simulations (DEELS 2023 WS)!

Thank you

Contact

DESY. Deutsches	Sven Pfeiffer
Elektronen-Synchrotron	DESY - MSK
	sven.pfeiffer@desy.de
www.desy.de	(+49) 040 8998 2744