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The Model
The classical wake (v = cez)
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effect of all particles

s = negative bunch coordinate

Z = beamline coordinate



Monopole wakes
in structures with symmetry of revolution !!!
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lowest order contribution to longitudinal dynamic!

monopole wakes are the scheme for …
The “1D Synchrotron Radiation” Model
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energy part of EoM in a magnetic lattice
(transverse part is not changed)

accelerator coordinates
S = path length coordinate
s = positive bunch coordinate
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remedy: extraction of the singularity → add the field of –q1

opposite charge, linear motion
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this is all!
the rest is implementation

reference trajectory, constant velocity

How to choose ESR?

one-particle-model 



About ESR

( ) ( )
( )

( )( )

( ) ( )

3

1

2

0 r

1
SR 2 2

0

r

r r

,
11

1 44

q
E

S

R
S

S

s
s S S

R c

s S

q

s

R

R S

  



 
 
 



  − − 
=  +

− 
  





= − −

= −





+



n n β βn β
e

n β

r r

• ESR is a bit implicit, but this is not a numerical disadvantage
• singularity extraction needs some care (→ Taylor expansion)
• (ESR(0−,S) + ESR(0+,S))/2 is point particle loss; compare beam loading 

theorem; same result as far field radiation
• ESR(s > 0,S) negligible  (tail → head interaction)
• case n   might require some care
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from https://www.desy.de/fel-beam/s2e/publications/CSR_tutorial_with_L.pdf



Example: circular motion, Gaussian bunch, 3
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power loss, 
normalized to single particles loss



power loss, 
normalized to single particles loss

Example: circular motion, Gaussian bunch, 
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power loss, 
normalized to single particles loss

Example: circular motion, Gaussian bunch,               ,                        with 510pN = 3
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Coherent Synchrotron Radiation

CSRE

LW far term
LW near term + pole extraction
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Numerical Kernel ( )  max 1 ,0b s s= − 
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implemented in Xtrack & Ocelot
= projected “PRJ” method



Application 1: BCs for FELs
A benchmark case: BC2

ideal gaussian bunch, linear chirp
compression of 250 pC, 750 A to 5000 kA
with slice energy spread at exit 1 MeV
optics as for BC2
emittance = 0.5 µm/()
BC2 deflection angle 2.36 deg (r56 = 30.03 mm)

reduce charge:
q/250 pC = 1, 0.5, 0.25, 0.1, 0.01



q/250 pC = 1, 0.5, 0.25, 0.1, 0.01

current*1
2
4

10
100

  [m]s



methods

CC{MA}+NWTN
CC{MA}+HMLT
CC{CUM}+NWTN
CC{CUM}+HMLT
CC{CUM+PRJ}+NWTN
CC{CUM+PRJ}+HMLT
CC{PRJ}+NWTN
ImpactZ{CUM+CSR}
ImpactZ{CUM}
Xtrack{PRJ}+NWTN
Xtrack{CUM+PRJ}+NWTN
Xtrack{CUM2+PRJ}+NWTN
Xtrack{CUM}+NWTN

plots (slice analysis)

norm. emittance [m]
slice _E [eV]
slice _E/C [eV]
current scaled to full [A]
C=local compression
av(_E [eV])
av( _E [eV])-linear correlation
x offset [m]
x'' offset [rad]
Twiss 
Twiss  [m]

2d

perturbation method

full dynamic with
fields of unperturbed
source

NWTN = Newtonian equation of motion
HMLT = Hamiltonian equation of motion

MA = full Maxwell-EM field
PRJ = “1d” CSR model as described above
CSR = ImpactZ “1d” CSR model
CUM = collective uniform motion
CUM2 = collective uniform motion, modified force

3d, parallel
dynamic with self effects

3d
dynamic with self effects
same models as in Ocelot

the complete comparison 
is in the appendix
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2d

perturbation method

full dynamic with
fields of unperturbed
source

NWTN = Newtonian equation of motion
HMLT = Hamiltonian equation of motion

MA = full Maxwell-EM field
PRJ = “1d” CSR model as described above
CSR = ImpactZ “1d” CSR model
CUM = collective uniform motion
CUM2 = collective uniform motion, modified force

3d, parallel
dynamic with self effects

3d
dynamic with self effects
same models as in Ocelot

reference method

the complete comparison 
is in the appendix
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Application 2 (questionable): Undulators
three types of infinitely thin sources in undulator motion
motion into z direction, oscillation in x direction

(1)   point source → 1d CSR model → Hertzian dipole
(2)   round gaussian disc → Gaussian beam
(3)   infinite disc → = 1d FEL model → plane waves

simplifications:
• very small transverse oscillation (undulator parameter K → 0)
• → constant longitudinal velocity
• Lorentz transformation to rest frame → DC + time harmonic fields
• only fundamental time harmonic part

source terms:
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transverse E-field in undulator frame

for t = n T
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Rz z Rz z

1d (infinite) is similar to gaussian disc
(amplitude and phase)

point source is similar to gaussian disc
(amplitude and phase)

g.d. is 90 deg shifted compared to infinite
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Gouy phase →/2 phase shift for large z

conclusion

finite model is not in agreement with point model nor infinite 1d model

for the full range

z << zr : infinite 1d model  finite disc

z >> zr : point model  finite disc



round gaussian laser

Gouy phase →/2 phase shift for large z
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see text books or Wikipedia

( ) ( )arctan Rzz z =
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equivalent source

a PEC mirror at z = 0 shields the laser for z > 0;

therefore the sources on the mirror create the field

the current density on the mirror is 
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3 L= −J J



Appendix: 11 Diagrams by 13 Methods

CC = 2d

perturbation method

full dynamic with
fields of unperturbed
source

Xtrack = 3d

dynamic with self effects
same models as in Ocelot

ImpactZ = 3d

self effects

CSR model
with less
effects

Newtonian equation of motion

Maxwell fields

PRJ
(projected method)

CUM+PRJ/CSR

CUM
(collective uniform motion)

11 slides with diagrams are organized as:

CUM2+…

modified 
transverse force

instead of

2

rF qE ⊥ ⊥=

( )q ⊥  +e E v×B



some conclusions (before the diagram slides):

very good agreement, reference method
quite good agreement
not quite the same
significant disagreement
“reasonable” approximation to reference method

Maxwell fields

PRJ
(projected method)

CUM+PRJ/CSR

CUM
(collective uniform motion)

Newtonian equation of motion
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