

Margarita Bulgacheva, Erion Gjonaj, Dmitry Bazyl

WHY PLASMONIC CATHODE?

Semiconductors

High Quantum Efficiency Chemically reactive Expensive Low Quantum Efficiency Less chemically reactive

Metals

Cheaper

SHORT THEORY OF PLASMONICS

- Surface plasmons (SPs) are electromagnetic excitations that propagate along the interface between a metal and a dielectric.
- In order to get plasmons, it is necessary to couple light into the SP modes. The coupling can be achieved using a periodic structure.

TECHNISCHE

3

DISPERSION MODEL

Existing models

- Different models available (e.g. Drude, partial fraction, Lorentz model)
- The results are not consistent

Our approach

Own fitting based on data from Johnson & Christy

Faculty | Institute | Person

- Johnson and Christy data: 44 data points (180-984 nm)
- The fitting: 1000 interpolated data points

NANO-STRUCTURE GEOMETRIES

OPTIMIZATION OF IR-CATHODE WITH NANO-CONES (800 NM)

28.06.2024

Faculty | Institute | Person

6

OPTIMIZATION OF IR-CATHODE WITH NANO-CONES (800 NM)

Important findings:

- Optimal cone ratio (Top radius / bottom radius) = 0.2 for different wavelengths
- Periodicity changes the resonant wavelength linearly

Parameter	Optimal value		
Periodicity	767.6 nm		
Radius	186 nm		
Blending radius	50 nm		
Depth	210 nm		
Ratio	0.2		

OPTIMIZATION OF IR-CATHODE VARIOUS GEOMETRIES

Square		Round		Gaussian	
Parameter	Optimal value	Parameter	Optimal value	Parameter	Optimal value
Periodicity	751.4 nm	Periodicity	755.9 nm	Periodicity	772.2 nm
Width	260 nm	Radius	150 nm	FWHM	186 nm
Depth	240 nm	Depth	240 nm	Depth	170 nm

TECHNISCHE

UNIVERSITÄT DARMSTADT

9

Faculty | Institute | Person

28.06.2024

OPTIMIZED IR-CATHODE WITH NANO-CONES (800 NM)

E-field distribution at 800 nm

Faculty | Institute | Person

EFFECT OF GEOMETRICAL UNCERTAINTIES [TBD]

BEAM DYNAMICS A SINGLE NANO-CONE

TECHNISCHE UNIVERSITÄT DARMSTADT

Optically induced emission model:

- Sample structure
- Use light source with given wavelength and power
- Get sample emission points
- Produce new points with temporal profile out of sample points

BEAM DYNAMICS FLAT VS STRUCTURED

Faculty | Institute | Person

13

BEAM DYNAMICS FLAT VS STRUCTURED (SHORT BUNCH)

- Longer distance
- Shorter bunch
- Qualitative
- Fixed QE (1%)
- Preliminary calculation
- No space charge
- E is constant (≈50 MV/m)

BEAM DYNAMICS FLAT VS STRUCTURED (SHORT BUNCH)

Flat cathode

Structured cathode

TECHNISCHE UNIVERSITÄT DARMSTADT

Faculty | Institute | Person

QUANTUM EFFICIENCY DISTRIBUTION

QE distribution 2D map:

- Calculated the power loss distribution in volume
- Integrated the losses over Z
- Calculated QE with simplified Moments model for metals:

$$QE(267nm) = \frac{(1-R)}{(1+p)} \frac{\mu(\hbar\omega - \phi)^2}{4\hbar\omega(\mu + \hbar\omega)(2\mu - \hbar\omega)}$$

RESULTS

- Own fitting of dispersion
- Optimized IR-operated cathodes for different nanohole geometries
- Implemented optically induced emission model
- Calculated preliminary beam dynamics for a single nano-cone
- Estimated the effect of nano-cone depth on the beam dynamics

NEXT STEPS

- Finish calculation of the effect of geometrical uncertainties for 10x10 array of cones
- Implement QE distribution to beam dynamics calculation
- Implement Fowler-DuBridge quantum efficiency model
- Scale initial emission results to macroscopic spot size
- Calculate full beam dynamics for the electron gun
- Optimization including beam dynamics