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• Circular accelerators need dipole magnets to correct orbit distortions

• PETRA IV: ultra-low emittance synchrotron radiation source 

➔ Fast orbit feedback system, corrector magnets with frequencies in kHz range

• Strong eddy currents ➔ power losses, time delay, and field distortion

• Simulation challenging due to small skin depths and laminated yoke

➔ Need for technique to simplify simulations

INTRODUCTION

I N T R O D U C T I O N
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• Magnetoquasistatic PDE: 𝛻 × (𝜈(
 

Ԧ𝑟 )𝛻 × Ԧ𝐴 Ԧ𝑟 ) + 𝑗𝜔𝜎( Ԧ𝑟) Ԧ𝐴( Ԧ𝑟) =  Ԧ𝐽s( Ԧ𝑟) 

• Replace reluctivity 𝜈( Ԧ𝑟) and conductivity 𝜎( Ԧ𝑟) in the laminated yoke with spatially 

constant tensors

𝜈( Ԧ𝑟) → ധ𝜈 =
1

8
𝜎c𝑑𝛿𝜔 1 + 𝑗

  nh( 1 + 𝑗 𝛿−1𝑑) 

  nh2 1 + 𝑗 𝛿−1 Τ𝑑 2  

1 0 0
0 1 0
0 0 0

+ 𝜈c

0 0 0
0 0 0
0 0 1

 𝜎( Ԧ𝑟) → ധ𝜎 = 𝛾𝜎c

1 0 0
0 1 0
0 0 0

THEORY

H O M O G E N I Z A T I O N  T E C H N I Q U E
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Skin depth 𝛿 = Τ2 𝜔𝜎c𝜇c

Stacking factor 𝛾 =
𝑉c

𝑉Yoke

P. Dular et al., 2003

L. Krählenbühl et al., 2004

H. De Gersem et al., 2012



• Model specifics:

• Iron yoke: length = 40 mm, lamination thickness = 1.83 mm

• Copper beam pipe: thickness = 0.5 mm, length = 140 mm

• Coils: current = 10 A (peak), # turns = 250 

• Frequency domain simulation via CST Studio Suite®

VERIFICATION

H O M O G E N I Z A T I O N  T E C H N I Q U E
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VERIFICATION

H O M O G E N I Z A T I O N  T E C H N I Q U E
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Multipole 

coeff.

Average rel.

error

Dipole 1 %

Quadrupole 5 %

Sextupole 2 %

• Eddy current losses well approximated • Aperture field well approximated 

• Simulation time is reduced from several hours to just a few minutes! 

➔ After comparing to other techniques, we decided to use this technique to simulate the corrector magnets 

MULTIPOLE COEFFICIENTSEDDY CURRENT LOSSES
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• Dipole corrector

• Octupole-like design

• Main coils with 975 At, auxiliary coils with 405 At (AC)

• Laminated yoke with 580 mm diameter, 90 mm length 

• Neighboring quadrupoles 

• DC currents 

• Not laminated

• Distance to corrector yoke ~ 11.5 cm ➔ cross-talk?

MODEL DESCRIPTION

L I N E A R  C O R R E C T O R  M A G N E T  S I M U L A T I O N S  
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580 mm

580 mm

auxiliary coil
main coil



EDDY CURRENT LOSSES & 
MULTIPOLE COEFFICIENTS

L I N E A R  C O R R E C T O R  M A G N E T  S I M U L A T I O N S
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• At lower frequencies: 𝑃eddy 𝛼 𝑓2, as expected from theory*

• Lamination thickness only important at frequencies ≤ 1 kHz

• Dipole field is attenuated due to eddy currents 

• Beam pipe ➔ stronger attenuation at higher frequencies  

* R. L. Stoll, The Analysis of Eddy Currents. 1974.

  J. Lammeraner and M. Štafl, Eddy Currents. 1966.



INTEGRATED TRANSFER 
FUNCTION & FIELD LAG

L I N E A R  C O R R E C T O R  M A G N E T  S I M U L A T I O N S  

28.06.2024 11Dept. of Electrical Engineering and Information Technology | TEMF | Jan-Magnus Christmann

ITF(𝑓) =
𝑙׬ 𝐵1(𝑧, 𝑓)  𝑧

𝑙׬ 𝐵1,DC(𝑧)  𝑧

• Integrated transfer function and field lag (phase difference between current and aperture field) 

are of high interest for design of feedback control

• We compute both from our simulations for different yoke materials, different lamination 

thicknesses, etc.



CROSS-TALK

L I N E A R  C O R R E C T O R  M A G N E T  S I M U L A T I O N S
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• Analyze ITF and field lag for model with neighboring quadrupoles, compare to stand-alone corrector

• Main difference: at low frequencies, a ~0.7  B peak is occurring in the ITF of the model with the neighboring 

quadrupoles

• Reason for the peak in the ITF is parasitic dipole component inside the quadrupole magnets 



BEAM PIPE MATERIAL TRANSITION

L I N E A R  C O R R E C T O R  M A G N E T  S I M U L A T I O N S
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Investigate different scenarios characterized by 

distance 𝚫𝒛 from corrector yoke to copper parts of 

beam pipe 

• The closer the copper parts are to the corrector yoke, the 

smaller the bandwidth 

• Copper parts have a higher conductivity than SS part

     ➔ stronger eddy currents ➔ stronger field attenuation
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• To incorporate non-linear 𝑩𝑯-curves into simulations: combine homogenization technique and harmonic balance FEM (HBFEM)

• HBFEM is a technique to approximate periodic solutions of nonlinear transient PDEs in frequency domain

• Example: excitation current with 1st and 3rd harmonic, include field quantities up to 3rd harmonic

WITHOUT DC BIAS - THEORY

N O N L I N E A R  S I M U L A T I O N S
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S. Yamada and K. Bessho (1988)

H. De Gersem, H. Vande Sande, K. Hameyer (2001)

𝛻 × (𝜈(
 

𝑡)𝛻 × Ԧ𝐴 𝑡 ) + 𝜎
𝜕 Ԧ𝐴(𝑡)

𝜕𝑡
=  Ԧ𝐽𝑠(𝑡)

𝛻 × ( 𝜈(𝜔) ⊛ 𝛻 × Ԧ𝐴 𝜔 ) + 𝑗𝜔𝜎 Ԧ𝐴(𝜔) =  Ԧ𝐽s(𝜔)

+ Homogenization
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• To resolve the nonlinearity: bring off-diagonal terms to the right-hand side

• Iterate until energy does not change anymore

WITHOUT DC BIAS - THEORY

N O N L I N E A R  S I M U L A T I O N S
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Ԧ𝑎



WITHOUT DC BIAS - VERIFICATION                       

N O N L I N E A R  S I M U L A T I O N S
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• Simple inductor with laminated core, excitation current: 𝐼s(𝑡) = 1.5 kA c  2𝜋50Hz 𝑡 + 0.24 kA c  2𝜋150Hz 𝑡
• Compare results of HBFEM + homogenization (GetDP + Python) to transient CST simulation with individually 

resolved laminations

➔ Good agreement in magnetic flux density 

➔ Larger differences in magnetic field strength

➔ Suspicion: differences in magnetic field strength are due to not having included enough harmonics 



WITHOUT DC BIAS - VERIFICATION 

N O N L I N E A R  S I M U L A T I O N S
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• Include 5th harmonic in the analysis

➔ Still good agreement in magnetic flux density, large differences in magnetic field strength vanish

➔ Decent agreement in magnetic energy 



• Current signal of corrector magnet: DC current + oscillations ➔ modify HBFEM method to include DC bias 

• Again, we combine HBFEM with a homogenization technique

WITH DC BIAS - THEORY

N O N L I N E A R  S I M U L A T I O N S
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differential reluctivity magnetizing field strength

Ӗ𝜉 =
1

12
𝜎Fe𝑑

2
1 0 0
0 1 0
0 0 0

Ӗ𝜈 =
1

𝛾
𝜈Fe

+
1 − 𝛾
𝜈Iso

1 0 0
0 1 0
0 0 0

+ 𝜈Fe𝛾 + 𝜈Iso(1 − 𝛾)
0 0 0
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∇ × Ӗ𝜈∇ × Ԧ𝐴 + ∇ × Ӗ𝜉∇ ×
𝜕 Ԧ𝐴

𝜕𝑡
+ ധ𝜎

𝜕 Ԧ𝐴

𝜕𝑡
= Ԧ𝐽s

𝛻 × 𝜈 𝜔 ⊛ 𝛻 × Ԧ𝐴 𝜔 + 𝑗𝜔𝜎 Ԧ𝐴 𝜔 =  Ԧ𝐽s 𝜔  ⇒  𝛻 × 𝜈𝑑 𝜔 ⊛ 𝛻 × Ԧ𝐴 𝜔 + 𝑗𝜔𝜎 Ԧ𝐴 𝜔 =  Ԧ𝐽s 𝜔 − ∇ × 𝐻c (𝜔)

H O M O G E N I Z A T I O N

J. Gyselinck et al., 1999

chord reluctivity



WITH DC BIAS - VERIFICATION 

N O N L I N E A R  S I M U L A T I O N S
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• Excitation current: 𝐼s 𝑡 = 750A + 120A c  2𝜋50Hz 𝑡  

• Comparison to transient CST simulation of toy model:

• Very good agreement in magnetic energy in the core

• Decent agreement in magnetic flux densities at individual points inside the core (average rel. error 3.7 %) 



• Same magnet as before, lam. thickness 𝑑 = 0.5 mm

• Excitation current for both coils:          

𝐼s(𝑡) = 2.5 kA c  2𝜋50Hz 𝑡  

• Agreement in aperture field and magnetic energy 

in the yoke

• Eddy current losses well approximated:    

1.36 W with Hom. HBFEM vs. 1.32 W with CST                

➔ 3 % relative error

• Higher order finite elements* to achieve good 

approximation of losses and energy

APPLICATION TO C-DIPOLE

N O N L I N E A R  S I M U L A T I O N S
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*J.P. Webb and B. Forghani, “Hierarchal Scalar and Vector Tetrahedra“, 1993 



APPLICATION TO C-DIPOLE

N O N L I N E A R  S I M U L A T I O N S
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• Compute eddy current losses up to 𝑓 = 65 kHz    

➔ Scaling behavior as expected from theory*

        ➔ Good agreement with CST results up to 𝑓 ≈ 1 kHz                   

        

• Differences between Hom. HBFEM and CST at higher 

frequencies are due to mesh dependence of CST results

• Hom. HBFEM reduces simulation time for nonlinear 

simulations in kilohertz range from days to hours

* R. L. Stoll, The Analysis of Eddy Currents. 1974.

  J. Lammeraner and M. Štafl, Eddy Currents. 1966.
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CONCLUSION/OUTLOOK

C O N C L U S I O N / O U T L O O K
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1. Verification of Homogenization

• Good approximation of multipoles & power 

losses

➔ Simulation time for linear simulations 

reduced from hours to minutes

2. Application of Homogenization to Corrector

• Power losses, multipoles along axis

• Integrated transfer function & field lag

• Cross-talk with neighboring magnets

• Beam pipe material transition

3. Implementation & Verification of Hom. HBFEM

• Toy model with and without DC bias 

• C-Dipole without DC bias up to 65 kHz

➔ Simulation time for nonlinear simulations                                                     

reduced from days to hours

Application of Hom. HBFEM to Corrector
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