Numerical Optimization of the Shintake Cavity

Simon Karau, Peter Hülsmann, Michael Bousonville, Silke Vilcins Hamburg, MHF, 2023-12-04

Overview

Table of Contents

1. Principle of the Choke-Mode-Cavity

- Concept of the Choke-Mode-Cavity by T. Shintake 1992
- Rough Verification of Measured Cavity Spectrum of the Original Paper by CST Frequency-Domain-Solver

2. One-Cell 1.5 GHz Choke-Mode-Cavity

- General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver
- Selection of a Damping Material and Simulation in CST Frequency-Domain-Solver
- Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

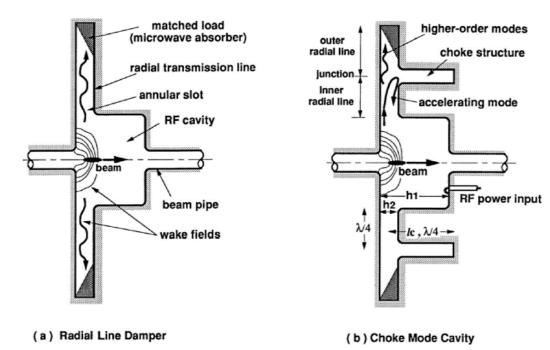
3. Coupler and Tuner System

- Specification of the Coupler & Tuner System
- Coupler & Tuner in the Radial-Line

4. Summary and Outlook

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity


- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a Choke in the Radial-Line to protect TM₀₁₀ Mode

- The **Short** will be transformed by $\lambda/4$ into an **Open.**
- Serial junction added impedance $Z_{\rm choke} = \infty$ and $Z_{\rm damper}$ $Z_{\rm junction} = Z_{\rm choke} + Z_{\rm damper} = \infty$ (Open) and has a infinitely impedance independent of the damper.
- Distance of $\lambda/4$ transforms the **Open** into a **Short** with $Z_{\text{wall}} = 0$.

Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 - -> Only not critical TE_{0nq} can not excite the Radial-Line
- The TM₀₁₀ acceleration Mode is protected by the Choke
 - -> Only current losses will attenuate the TM₀₁₀ Mode (perfect Choke)

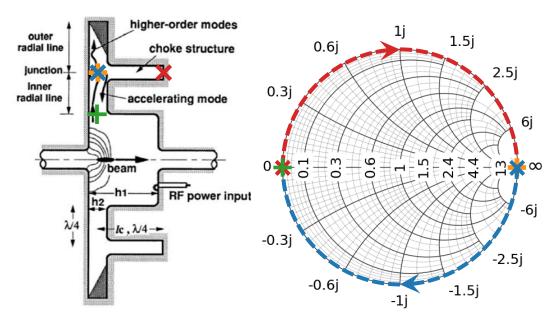
Sketch from T. Shintake, "The Choke Mode Cavity", 1992.

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity

- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a Choke in the Radial-Line to protect TM₀₁₀ Mode


- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{\rm choke} = \infty$ and $Z_{\rm damper}$

 $Z_{\rm junction} = Z_{\rm choke} + Z_{\rm damper} = \infty$ (Open) and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the Open into a Short with $Z_{\text{wall}} = 0$.

Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 - -> Only not critical TE_{0nq} can not excite the Radial-Line
- The TM₀₁₀ acceleration Mode is protected by the Choke
 - -> Only current losses will attenuate the TM₀₁₀ Mode (perfect Choke)

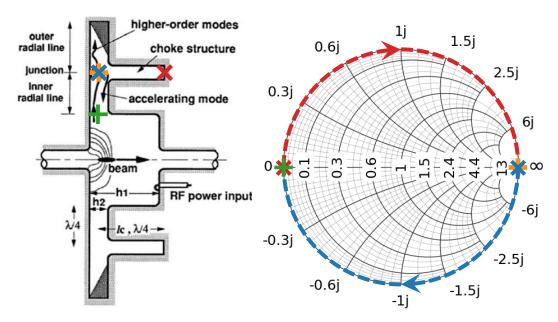
Sketch from *T. Shintake*, "The Choke Mode Cavity", 1992 and an added Smith Chart visualization of the Choke

Concept of the Choke-Mode-Cavity by T. Shintake 1992

Cylindrically Radial-Line ending with a Damper on a Cavity

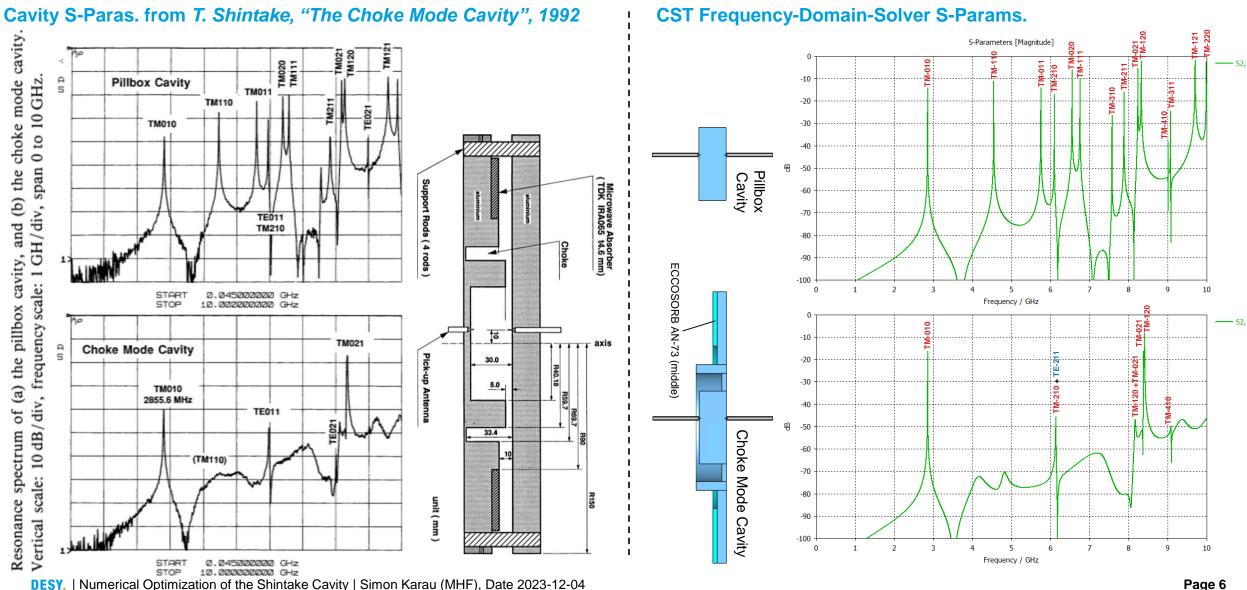
- All TM-Modes (and most TE-Modes) will excite the Radial-Line
- and will be attenuated by the Damper.

Adding a Choke in the Radial-Line to protect TM₀₁₀ Mode


- The **Short** will be transformed by $\lambda/4$ into an **Open**.
- Serial junction added impedance $Z_{\rm choke} = \infty$ and $Z_{\rm damper}$

 $Z_{\rm junction} = Z_{\rm choke} + Z_{\rm damper} = \infty$ (Open) and has a infinitely impedance independent of the damper.

• Distance of $\lambda/4$ transforms the Open into a Short with $Z_{\text{wall}} = 0$.


Damping of Higher Order Modes (HOMs):

- Almost all HOMs are strongly attenuated
 - -> Only not critical TE_{0nq} can not excite the Radial-Line
- The TM₀₁₀ acceleration Mode is protected by the Choke
 - -> Only current losses will attenuate the TM₀₁₀ Mode (perfect Choke)

Sketch from *T. Shintake, "The Choke Mode Cavity", 1992* and an added Smith Chart visualization of the Choke

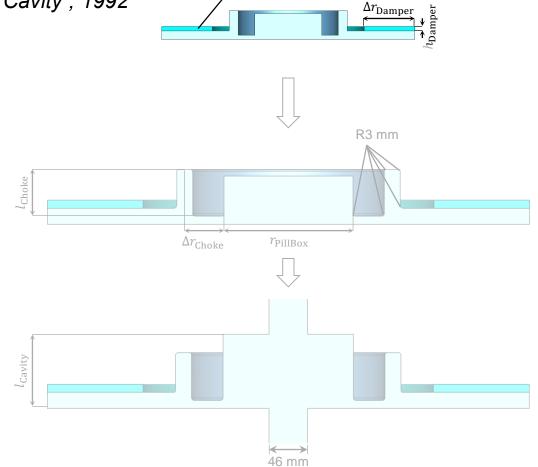
Rough Verification of Measured Cavity Spectrum of the Original Paper by CST Frequency-Domain-Solver

General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

I. Starting Point

- Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
- Damper:
 - CST Material Library: ECCOSORB AN-72 (front)
 - $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$


II. Scaling of the Model to 1.5 GHz

- Scaling by Factor 1.9 & Rounding Edges with R = 3 mm
- Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find l_{Choke} & Δr_{Choke} by Iterations for:
 - $f_{\rm res} = 1.500 \, {\rm GHz}$
 - $\max\{Q_0\}$

III. Pill-Box Choke-Mode-Cavity with Beam-Pipe

- Adding the Ø = 46 mm Petra IV Beam-Pipe
- Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
- Reoptimization of the Structure by CST Eigenmodesolver

• ...

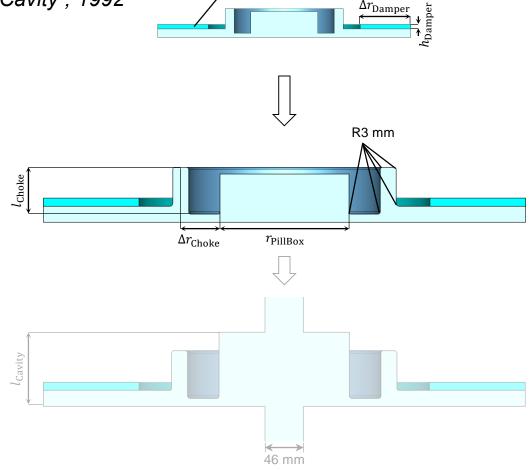
ECCOSORB AN-72 (front)

General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

I. Starting Point

- Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
- Damper:
 - CST Material Library: ECCOSORB AN-72 (front)
 - $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$


II. Scaling of the Model to 1.5 GHz

- Scaling of the Dimensions & Rounding Edges with R = 3 mm
- Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find l_{Choke} & Δr_{Choke} by Iterations for:
 - $f_{\rm res} = 1.500 \, \text{GHz}$
 - $\max\{Q_0\}$

III. Pill-Box Choke-Mode-Cavity with Beam-Pipe

- Adding the Ø = 46 mm Petra IV Beam-Pipe
- Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
- Reoptimization of the Structure by CST Eigenmodesolver

• ...

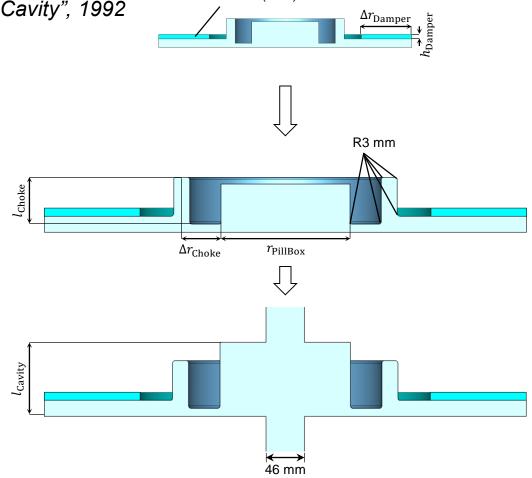
ECCOSORB AN-72 (front)

General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver

1.5 GHz Pill-Box Choke-Mode-Cavity (CMC)

I. Starting Point

- Exemplary 2.867 GHz Cavity from T. Shintake, "The Choke Mode Cavity", 1992
- Damper:
 - CST Material Library: ECCOSORB AN-72 (front)
 - $\Delta r_{\text{Damper}} = 60 \text{ mm } \& h_{\text{Damper}} = 5 \text{ mm}$

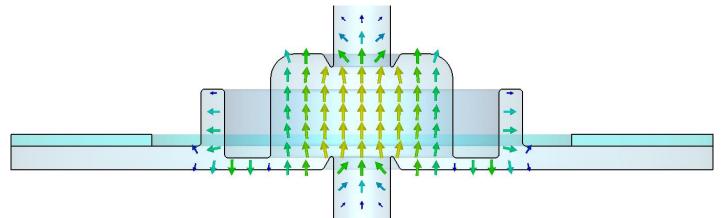

II. Scaling of the Model to 1.5 GHz

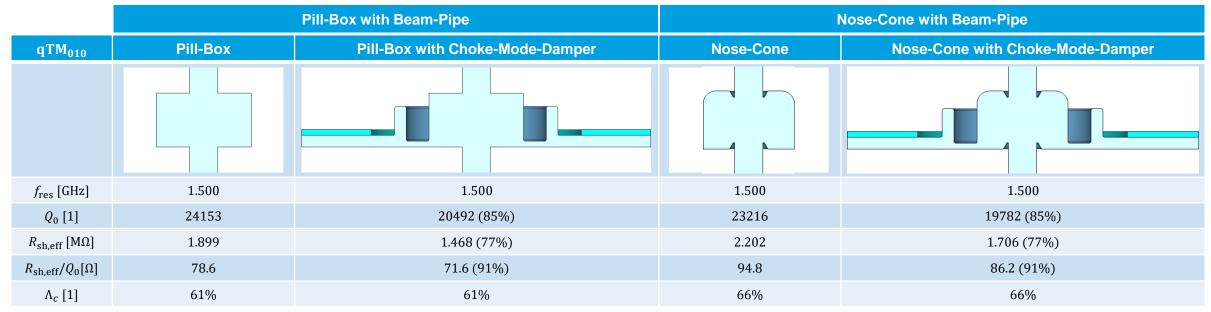
- Scaling by Factor 1.9 & Rounding Edges with R = 3 mm
- Reoptimization of the Structure by CST Eigenmodesolver
 - Get r_{PillBox} to get $f_{\text{res}} = 1.500 \text{ GHz}$
 - Find l_{Choke} & Δr_{Choke} by Iterations for:
 - $f_{\rm res} = 1.500 \, \rm GHz$
 - $\max\{Q_0\}$

III. Pill-Box Choke-Mode-Cavity with Beam-Pipe

- Adding the Ø = 46 mm Petra IV Beam-Pipe
- Optimization of Pill-Box Length l_{Cavity} for max. $R_{sh,eff}$
- Reoptimization of the Structure by CST Eigenmodesolver

• ..

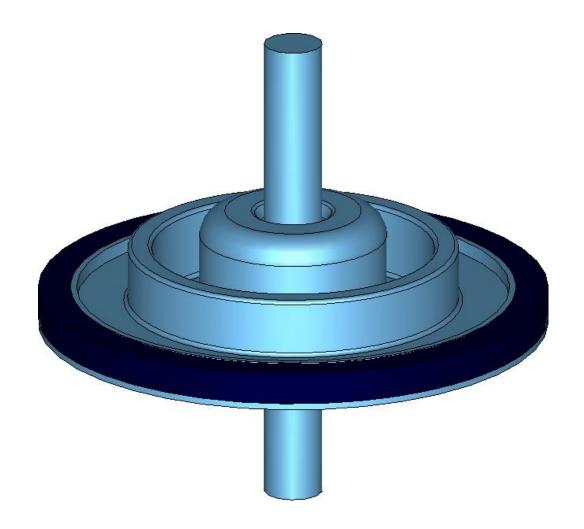

ECCOSORB AN-72 (front)


General Cavity Structure and Optimization of TM₀₁₀ Mode by CST Eigenmodesolver

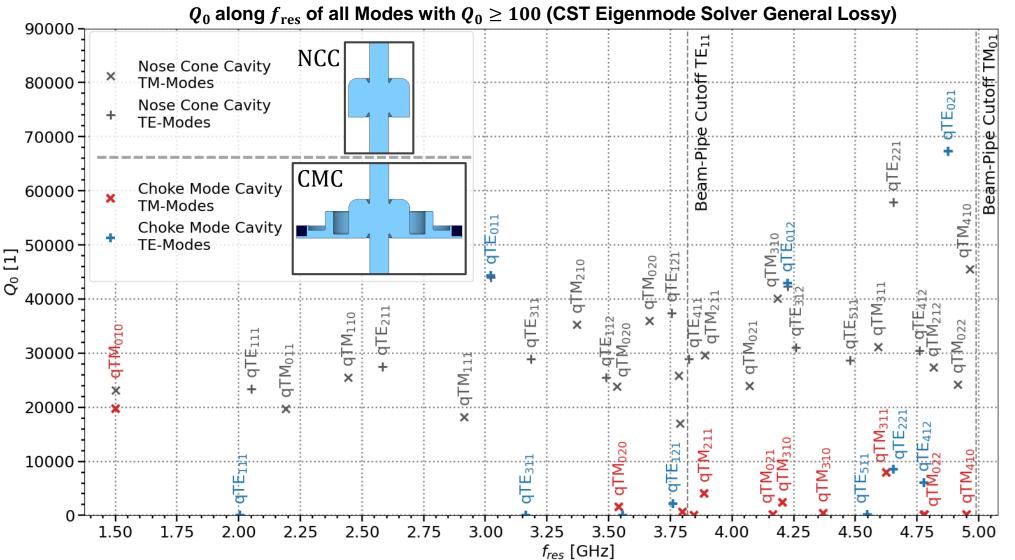
Nose-Cone Optimization

For further Optimization of the Cavity

- Noses are included:
 - At the Transitions of Cavity and Beam-Pipe
 - to increase the Volume of Stored Energy.
- Rounding of the outer Cavity Edges:
 - Reduces the Losses of the Cavity,
 - but are not used at the Back-Side, to ensure
 - the excitation of the Radial-Line by all TM-Modes.


Selection of a Damping Material

General selection of an Damping Material


- First Simulations used non-practical Damping Materials
- As a real usable Damping Material
 - the Idea of single Ring of Siliziumcarbid (SiC) was adapted from
 - T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", 2014. because of the simplicity and suitable Material Properties

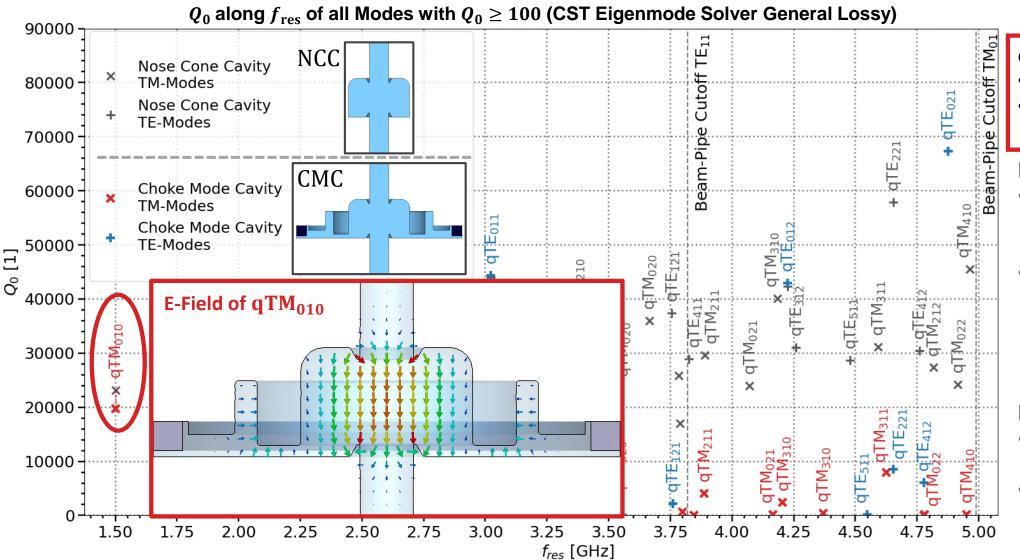
Simulation Parameters

- RF Material Parameters ($\underline{\varepsilon}_r$) of SiC vary widely between
 - Manufacturing Technique,
 - Frequency and
 - Temperature and must be measured to get precise Values.
- For Simulation before a Material Measurement
 - $\varepsilon_r = 20$
 - $tan \delta_E = 0.25$ are used.

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

Results

qTM_{010} Mode


- $Q_0(NCC) = 23157$
- $Q_0(CMC) = \frac{19784}{85\%}$

Decreasing of other qTM

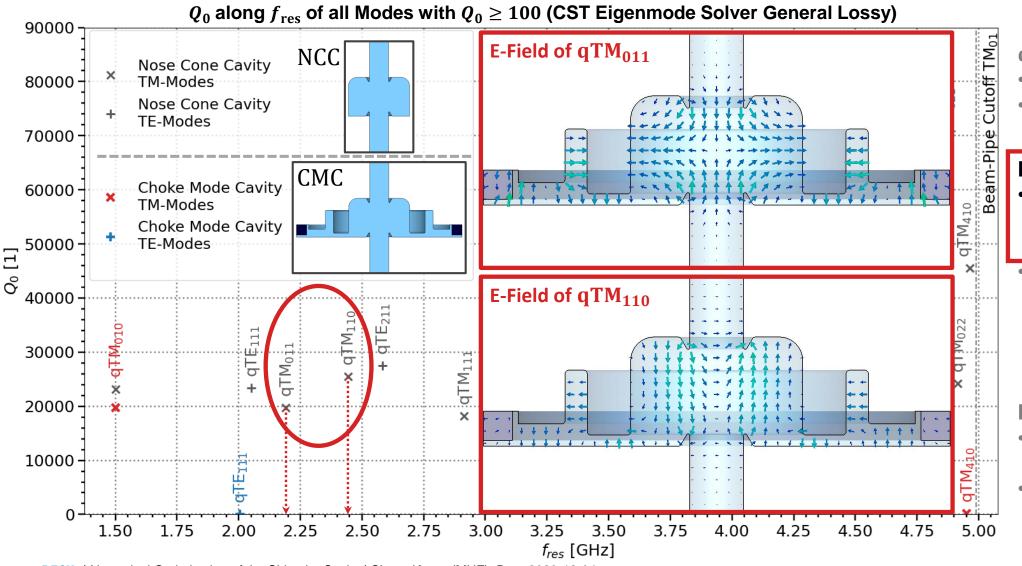
- Strongly reduced Q_0 : $Q_0(qTM_{011}) \approx 8$ $Q_0(qTM_{110}) \approx 17$
- Highest HOM-TM: $Q_0(qTM_{311}) \approx 8000$ with f_{res} next to Choke 3^{rd} resonance $4.5 \text{GHz} = 3 \cdot 1.5 \text{GHz}$

- Most qTE are also strongly reduced
- Only qTE_{0nq} are undamped, because can not excite Radial-Line

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

Results

qTM₀₁₀ Mode


- $Q_0(NCC) = 23157$
- $Q_0(CMC) = \frac{19784}{85\%}$

Decreasing of other qTM

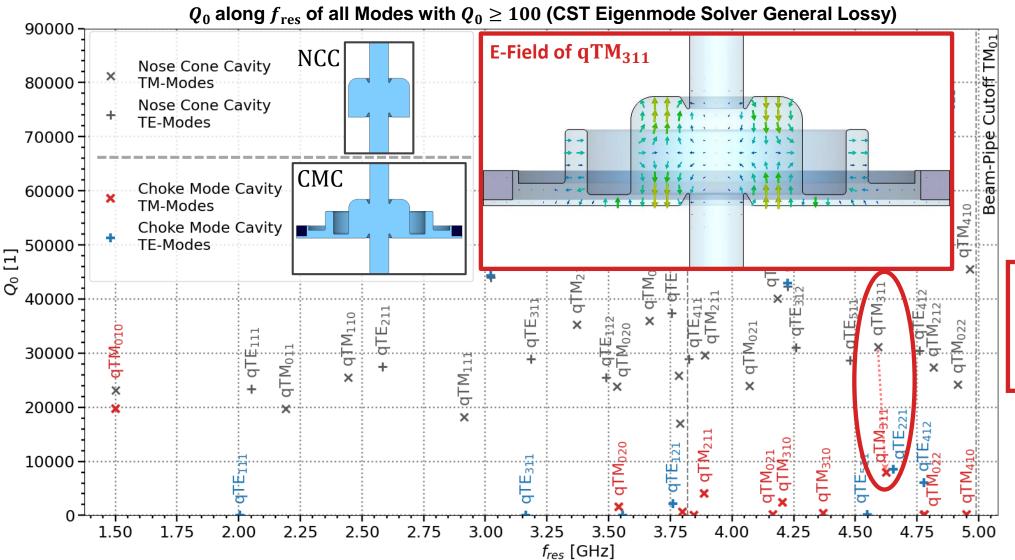
- Strongly reduced Q_0 : $Q_0(qTM_{011}) \approx 8$ $Q_0(qTM_{110}) \approx 17$
- Highest HOM-TM: $Q_0(qTM_{311}) \approx 8000$ with f_{res} next to Choke 3^{rd} resonance $4.5 \text{GHz} = 3 \cdot 1.5 \text{GHz}$

- Most qTE are also strongly reduced
- Only qTE_{0nq} are undamped, because can not excite Radial-Line

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

Results

qTM_{010} Mode


- $Q_0(NCC) = 23157$
- $Q_0(CMC) = \frac{19784}{85\%}$

Decreasing of other qTM

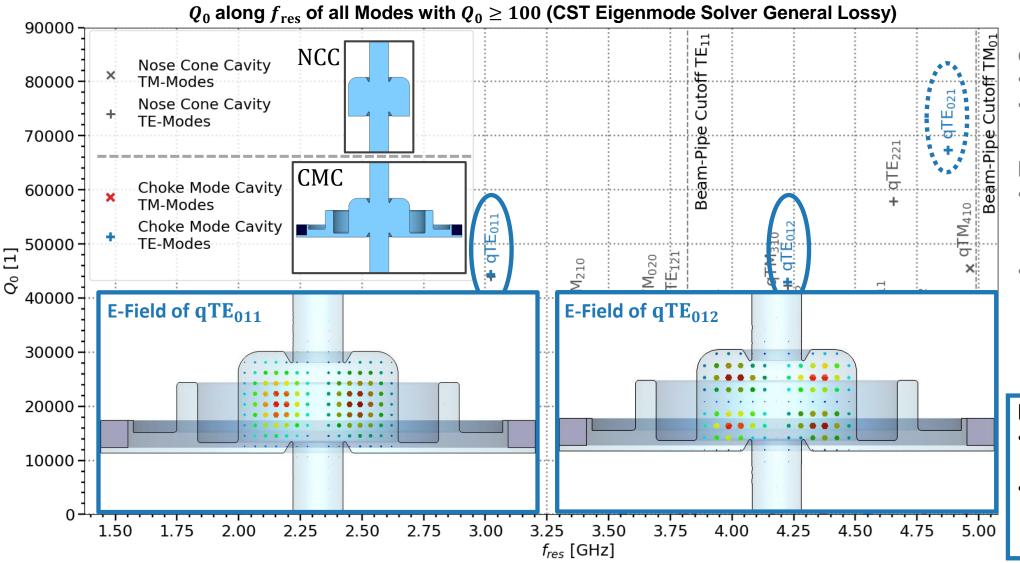
- Strongly reduced Q_0 : $Q_0(qTM_{011}) \approx 8$ $Q_0(qTM_{110}) \approx 17$
- Highest HOM-TM: $Q_0(qTM_{311}) \approx 8000$ with f_{res} next to Choke 3^{rd} resonance $4.5 \text{GHz} = 3 \cdot 1.5 \text{GHz}$

- Most qTE are also strongly reduced
- Only qTE_{0nq} are undamped, because can not excite Radial-Line

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

Results

qTM_{010} Mode


- $Q_0(NCC) = 23157$
- $Q_0(CMC) = \frac{19784}{85\%}$

Decreasing of other qTM

- Strongly reduced Q_0 : $Q_0(qTM_{011}) \approx 8$ $Q_0(qTM_{110}) \approx 17$
- Highest HOM-TM: $Q_0(qTM_{311}) \approx 8000$ with f_{res} next to Choke 3^{rd} resonance $3 \cdot 1.5$ GHz = 4.5 GHz

- Most qTE are also strongly reduced
- Only qTE_{0nq} are undamped, because can not excite Radial-Line

Mode Overview of Nose-Coned Choke-Mode-Cavity by CST Eigenmodesolver

Results

$qTM_{010} \ \text{Mode}$

- $Q_0(NCC) = 23157$
- $Q_0(CMC) = \frac{19784}{85\%}$

Decreasing of other qTM

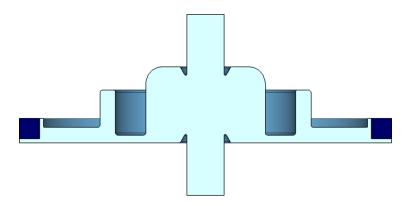
- Strongly reduced Q_0 : $Q_0(qTM_{011}) \approx 8$ $Q_0(qTM_{110}) \approx 17$
- Highest HOM-TM: $Q_0(qTM_{311}) \approx 8000$ with f_{res} next to Choke 3^{rd} resonance $4.5 \text{GHz} = 3 \cdot 1.5 \text{GHz}$

- Most qTE are also strongly reduced
- Only qTE_{0nq} are undamped, because can not excite Radial-Line

3. Coupler and Tuner System

Specification of the Coupler & Tuner System

Specification


- Keep manufacturing as simple as possible
 - Two Half Shells (Back & Top) without 45° Drilling
 - The Choke should not be turn around
- Actively adjustable Coupling Factor

Range: $K \approx 0.2$ to 5

Broadband Tunable Resonant-Frequency

Range: $\Delta f_{\rm res} \approx \pm 1.5 \, \rm MHz$ (or more)

to allow complete Detuning of the Cavity

3. Coupler and Tuner System

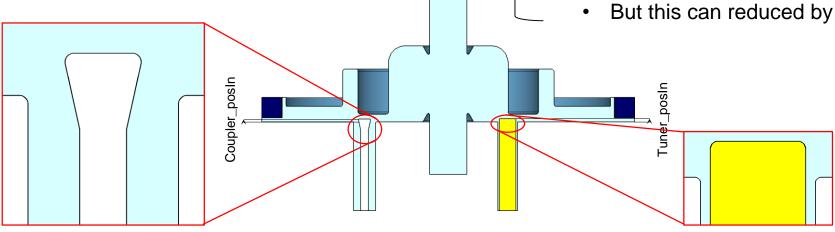
Specification of the Coupler & Tuner System

Specification

- Keep manufacturing as simple as possible
 - Two Half Shells (Back & Top) without 45° Drilling
 - The Choke should not be turn around
- Actively adjustable Coupling Factor
 - Range: $K \approx 0.2$ to 5
- Broadband Tunable Resonant-Frequency

Range: $\Delta f_{\rm res} \approx \pm 1.5 \, \rm MHz$ (or more)

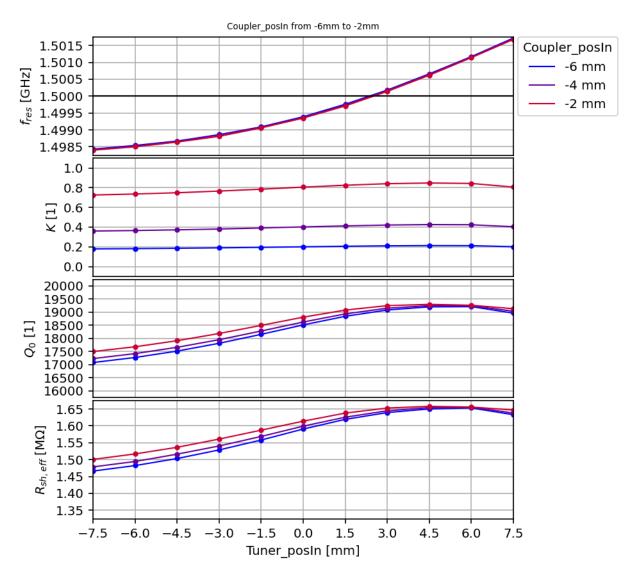
to allow complete Detuning of the Cavity

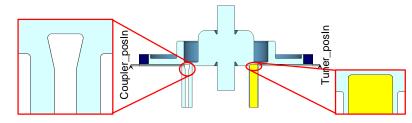

This is necessary:

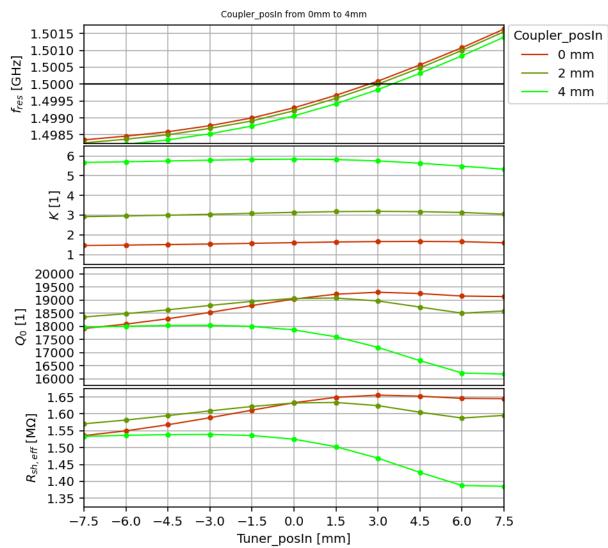
A capacitive Coupling and Tuning,

Positioned in the Radial-Line

Some Disadvantage:


- No longer perfect Symmetry
- Some part of the RF-Power at
 - 1.5 GHz can tunneling throw the Choke
 - The Q_0 of TM_{010} will be decreased in some way
 - But this can reduced by optimization



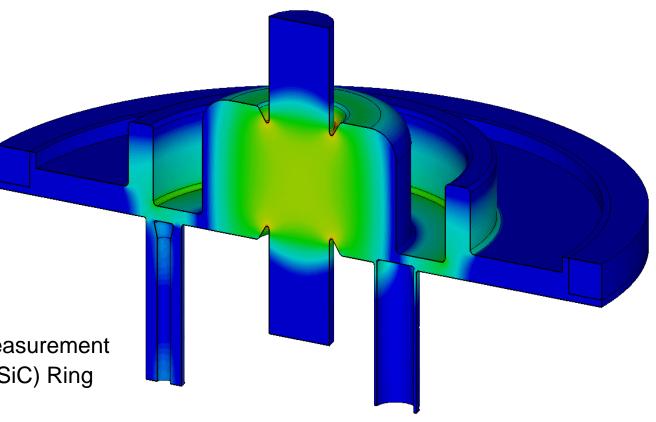


3. Coupler and Tuner System

Coupler & Tuner in the Radial-Line

Summary and Outlook

Results & Next Steps


Curent Design

Simulated One-Cell 1.5 GHz Cavity Design

- Damping of all HOMs (Except TE_{0nq})
- Coupling and Tuning in the Radial-Line
 - Adjustable Coupling-Factor
 - Broadband Tunable Resonant-Frequency
- With a very simple structure

Next Steps

- Adding of Coaxial-Lines Sensors for Mode Measurement
- Selection and Purchase of an Siliciumcarbid (SiC) Ring
- Creation of a Prototype

Thank you

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Simon Karau

MHF

simon.karau@desy.de

-5052

References

- 1. T. Shintake, "The Choke Mode Cavity", *Jpn. J. Appl. Phys.,* pp. pp. L 1567-L1570, 1992.
- T. Inagaki et al., "High-gradient C-Band Linac for a Compact X-Ray Free-Electron Laser Facility", Phys. Rev. ST Accel. Beams, vol. 17, p. 080702, 2014.