Assessment of Different Geometries for Single-Mode Cavities

TECHNISCHE UNIVERSITÄT DARMSTADT

Leon Kronshorst, Wolfgang F.O. Müller

Outline

- Recap of Herminghaus's Cavity Proposal
- Design Goals
- Considered Geometries
- Naive Ansatz
- Practical Single-Mode-Cavity
- Conclusion and Outlook

Herminghaus's Cavity Proposal

- Tapering a waveguide around the crossing beampipe
- Resonant frequency of ground mode is lowered beneath cutoff frequency of waveguide
- Higher order modes are free to travel down the waveguide to be damped

Cavity Schematic

The Downscaled BESSY-Cavity

$f_0 = 1.46 \text{GHz}$	10 HOM's till 2 GHz
$Q_0 = 4642$	$T_{\rm Tr} = 0.6548$

Previous Simulation Results

Design Goals for the 3rd Harmonic Cavity

- The ground mode frequency: $f_0 = 1.5 \text{ GHz}$
- Maximize the spacing to the 1st higher order mode

 $-\Delta f = f_1 - f_0$

- Maximize the Quality Factor Q
- Maximize the Transit Time Factor T_{Tr}

$$Q_0 = \frac{\omega W}{P_{\text{loss}}}, \qquad T_{\text{Tr}} = \left| \frac{\int_{-L/2}^{L/2} E_0(s) \cos(\frac{\omega s}{c}) ds}{\int_{-L/2}^{L/2} E_0(s) ds} \right|$$

• Fixed beam pipe radius: $r_{\rm bp} = 23 \text{ mm}$

General Geometric Dependency

- Cutoff frequency of lowest waveguide mode for different crosssectional geometries
 - Square and Rectangle: $f_{\text{cutoff}} = \frac{c}{2} \cdot \frac{1}{a}$
 - Circle: $f_{\text{cutoff}} = \frac{c}{2\pi} \cdot \frac{j'_{11}}{a}$, $j'_{11} - 1^{\text{st}}$ root of the 1st derivative of the 1st order Bessel function

- Ellipse:
$$f_{\text{cutoff}} = \frac{c}{2} \cdot \frac{1}{a} \cdot K^* \left(\frac{b}{a}\right)$$
, $K^* \left(\frac{b}{a}\right) = \sqrt{\frac{q_{11}}{1 - \left(\frac{b}{a}\right)^2}}$

 q_{11} - 1st root of the 1st derivative of the 1st order odd modified Mathieu function

General Geometric Dependency

Naive Ansatz

- Directly connecting the main cavity part to the waveguide
 - The waveguides cutoff frequency > resonant frequency of the cavity

Naive Ansatz

 $= \mathbf{e}$

• Rectangular cavity: $f_0 = 1.5 \text{ GHz}$

 $\Rightarrow a_{cav} = 49.965 \text{ mm}, \text{ b}/a_{cav} = 0.167$

• Elliptical Waveguide: $f_{\text{cutoff}} = 1.57 \text{ GHz}$

$$\Rightarrow a_{wg} = 49.965 \text{ mm}, \text{ b/a}_{wg} = 0.3$$

Very restricted geometry results in

$$\Rightarrow Q_0 = 10200, \ T_{\rm Tr} = 0.845$$

Improving the Ansatz

- The 2nd resonant frequency can be set above cutoff of the waveguide by using a loft
- The 1st resonant frequency is typically below the cutoff of a waveguide with the same cross-section

 It has nothing to do with the behavior of a true cavity

Simulation Results

- For all following results:
 - $f_0 = 1.5 \text{ GHz}$
 - $f_{\rm cutoff} = 2 \, \rm GHz$

Simulation Results

	Square Wavguide	Flipped Rectangular Waveguide	Circular Waveguide	Flipped Elliptic Waveguide	
Rectangular Cavity	$f_1 = 2.003$ $Q_0 = 14539$ $T_{\rm TR} = 0.808$	$f_1 = 2.006$ $Q_0 = 13\ 375$ $T_{\rm TR} = 0.818$	$f_1 = 2.003$ $Q_0 = 16\ 452$ $T_{\rm TR} = 0.808$	$f_1 = 2.007$ $Q_0 = 14\ 306$ $T_{\rm TR} = 0.816$	
Elliptic Cavity	$f_1 = 2.004$ $Q_0 = 17\ 469$ $T_{\rm TR} = 0.754$	$f_1 = 2.006$ $Q_0 = 15539$ $T_{\rm TR} = 0.789$	$f_1 = 2.004$ $Q_0 = 17\ 484$ $T_{\rm TR} = 0.784$	$f_1 = 2.005$ $Q_0 = 15\ 454$ $T_{\rm TR} = 0.802$	
	Cavity had to be short		Cavity had to be short		
-					
-	Waveguide		/itv Loft V	Vaveguide	
	vvaveguide	Loft Cav	VILY LOTT V	vaveguide	

Simulation Results

Conclusion and Outlook

- With proper parameter choice all combinations seem to be tuneable to work as single-mode-cavity
- Difficulties achieving a high Q and a high transit time factor remain
- But a high spacing between the ground resonance frequency and the first higher order mode frequency is possible
- Next steps:
 - Simulation with proper dampener at the waveguides ends
 - Sensitivity analysis for robust optimization
 - Try other inserts (short circuit plates, nose cones)
 - Investigate the boundary conditions for the "cavity"

