Collective effects simulation code CETASim

Chao Li, Y.-C. Chae and PETRA IV Beam Physics Team

DESY-TEMF Collaboration meeting

- Motivation and overview of CETASim.
- Benchmarks and simulation study for PETRA-IV storage ring
- Summary and outlook

Motivation and overview of CETASim

skew quadrupoles (Emittance exchange due to resonance crossing)

Set required filling pattern Set macro-particle in bunch train Set transfer map among ion interaction point Set ion species Set ramping term Set external exciter Set FIR filter for bunch-by-bunch feedbacks Set board band Impedance Set short range wakes Set long range wakes Post process

https://github.com/ChaoLilHEP/CETASIM

Bunch-by-bunch feedbacks

Open source and developed in C++

• Motivation:

٠

٠

•

•

٠

•

•

•

٠

•

Modules available

One-Turn matrix

- Particle notation:
 - **x** = (x, px, y, py, dz, δ)
- One-turn map T
 - Chromaticity and amplitude-depended tune are included in phase advances
 - Path-length effect due to dispersion is included
- $0 T_{16}$ $\cos\psi_x + \alpha_r \sin\psi_r$ $\beta_x \sin \psi_x$ 0 $\cos\psi_x - \alpha_x \sin\psi_x$ 0 $0 T_{26}$ 0 $-\gamma_x \sin \psi_x$ $0 T_{36}$ 0 0 $\cos\psi_y + \alpha_y \sin\psi_y$ $\beta_y \sin \psi_y$ $\mathbf{T} =$ $-\gamma_y \sin \psi_y$ $\cos\psi_y - \alpha_y \sin\psi_y \ 0 \ T_{46}$ 0 0 T_{52} T_{51} T_{53} T_{54} $1 \ 0$ 0 0 0 0 0 1

- Longitudinal kicks at RF
 - Numbers of RFs is not limited
 - Higher order momentum compact factor

$$dz_{i+1} = dz_i - L\sum_{j=1}^{3} \alpha_{cj}(\delta_i)^j \qquad d\delta_{i+1} = d\delta_i + \frac{1}{\beta^2 E_0} (-U_0 + \sum_n eV_{n,rf} \sin(\omega_{n,rf} d\tau_i + \phi_n))$$

- Motivation and overview of CETASim.
- Benchmarks and simulation study for PETRA-IV storage ring
- Summary and outlook

Radiation damping and quantum excitation.

- Algorithm of damping and excitation is the same as the Beam-Beam code from Hirata
- **x** = (x, px, y, py, dz, δ)
- Damping and excitation are treated in **X**-frame
- **B** and **H** are Twiss matrix and dispersion matrix

X = BHx.

$$\begin{pmatrix} \mathbf{X_1} \\ \mathbf{X_1} \end{pmatrix} = \lambda_x \begin{pmatrix} \mathbf{X_1} \\ \mathbf{X_1} \end{pmatrix} + \sqrt{\epsilon_x (1 - \lambda_x^2)} \begin{pmatrix} \hat{r}_1 \\ \hat{r}_2 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{X_3} \\ \mathbf{X_4} \end{pmatrix} = \lambda_y \begin{pmatrix} \mathbf{X_3} \\ \mathbf{X_4} \end{pmatrix} + \sqrt{\epsilon_y (1 - \lambda_y^2)} \begin{pmatrix} \hat{r}_3 \\ \hat{r}_4 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{X_5} \\ \mathbf{X_6} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \lambda_z^2 \end{pmatrix} \begin{pmatrix} \mathbf{X_5} \\ \mathbf{X_6} \end{pmatrix} + \begin{pmatrix} 0 \\ \sqrt{\epsilon_z (1 - \lambda_z^4)} \end{pmatrix} \begin{pmatrix} 0 \\ \hat{r}_6 \end{pmatrix}$$

$$\mathbf{x} = \mathbf{H}^{-1}\mathbf{B}^{-1}\mathbf{X},$$

Ref. Hirata, CERN SL-Note-97-57-AP, 1997

- Beam starts from non-equilibrium initial condition
- Target coupling is 10%
- Single RF, no beam loading effect from cavity.
- Beam evolves to equilibrium state as expected.

Broad band Impedance and wake field model in PETRA-IV

- Geometric impedance is obtained from GDFIDL, element-by-element, 1mm leading bunch (Yong-Chul)
- Resistive wall impedance is from ImpedanceWake2D (Sergey)
- Longitudinal, transverse dipole and transverse quadrupole

	Number	$\beta_{\mathbf{x}}$	$\kappa = \beta_y = \beta_z$ Kick Factor $N\beta_y k_y$ Loss Factor Λ							
element	N	m	m	m	V/PC	V/PC				
General Components (Storage Rings)										
BPM	788	6.18	7.31	1	3.39E+3	1.67E+0				
Absorber	576	3.80	4.73	1	3.04E+1	4.15E-3				
Bellow	375	2.71	4.25	1	3.84E+3	2.81E-3				
Flange	375	2.71	4.25	1	2.38E+2	8.60E-4				
ID ARCS (21 \times 5 [m] + 5 \times 10 [m])										
ID 5 mm	4	5.04	5.04	1	1.47E+3	7.34E-5				
ID 6 mm	17	5.04	5.04	1	5.58E+2	2.86E-4				
ID 7 mm	5	10.25	10.25	1	5.68E+2	7.42E-5				
Absorber	96	5.85	4.4	1	4.71E+0	6.91E-4				
Bellow	96	5.7	4.3	1	9.95E+2	7.22E-4				
Flange	96	5.8	4.4	1	6.31E+1	2.20E-4				
Long Straight Section										
RF	24	20	20	1	2.84E+3	9.43E+0				
3V RF	24	20	20	1	2.17E+4	13.43E+0				
FCT	6	7.76	8.44	1	1.73E+3	0.27E+0				
		S	hort Str	aight	Section					
FB H.	4	12.5	15	1	1.94E+3	0.36E+0				
FB V.	4	12.5	15	1	2.29E+3	0.36E+0				
Collimators	4	12.5	15	1	1.2E+4	0.14E+0				
		Inje	ection S	traigh	t Section					
Inj. Kicker	30	10	10	1	1.04E+4	5.29E+0				
		ID C	hamber	r RW	impedance					
5mm_ID	4	3.14	3.14	1	6.87E+3	0.15E+0				
6mm_ID	17	3.14	3.14	1	1.69E+4	0.52E+0				
Super_ID	5	6.08	6.08	1	1.21E+4	0.26E+0				
	R	ing rou	nd Char	nber	RW impedance					
10 mm radius	1	8.0	8.76	1	3.09E+4	2.58E+0				
Kick	k/Loss Facto	r In To	tal		1.31E+5	34.45E+0				

Single bunch effect-longitudinal impedance

- Petra-IV Impedance data and lattice parameters
- Longitudinal impedance only.
- 100K macro-particles and 20K turns tracking.
- RF cavities are ideal elements (no beam loading effect)
- Good agreement with Elegant results

Single bunch effect--TMCI at zero chrom

- Transverse dipole impedance only
- Vlasov solver (analytical) Vs Tracking
- 0.11 mA is the threshold at 0 chrom

Single bunch effect--transverse impedance

- Petra4 Impedance data and lattice parameters
- Longitudinal impedance, transverse dipole and quadrupole impedance.
- 100K Particles 20K turns.
- Single and double RF systems
- RF Cavities are ideal elements (no beam loading effect)
- Good agreement with Elegant results.
- At chrom 5, the threshold is around 0.5mA and 2 mA without and with the 3rd order harmonic cavity

Coupled bunch effects

- Wakes are limited to analytical models
 - RW and RLC wakes
- Tracking is done in time domain
 - Bunch-by-bunch info. of previous turns have to stored in memory in traking
- Bunches are treated as point particles (coherent effect only)
- Exact wake from RW

$$W_0'(z) = \frac{1}{b^2} \left[\frac{e^{-z/z_0}}{3} \cos\left(\frac{\sqrt{3}z}{z_0}\right) - \frac{\sqrt{2}}{\pi} \int_0^\infty dx \frac{x^2 e^{-x^2 z/z_0}}{x^6 + 8} \right]$$
$$W_1(z) = -\frac{32}{b^3} (2\chi)^{1/3} \left[\frac{e^{-z/z_0}}{12} \cos\left(\frac{\sqrt{3}z}{z_0}\right) - \frac{1}{4\sqrt{3}} e^{-z/z_0} \sin\left(\frac{\sqrt{3}z}{z_0}\right) - \frac{\sqrt{2}}{\pi} \int_0^\infty dx \frac{x^2 e^{-x^2 z/z_0}}{x^6 + 8} \right]$$

Approximation applied in CETASIM

$$W_0'(z) \approx \frac{1}{2\pi b} \sqrt{\frac{c}{\sigma}} \frac{1}{|z|^{3/2}} \qquad W_1(z) \approx -\frac{2}{\pi b^3} \sqrt{\frac{c}{\sigma}} \frac{1}{|z|^{1/2}}.$$

RW impedance (above) and wakes (bottom)

Coupled bunch mode in transverse (Petra-IV parameters)

- RW parameters shown in table
 - 4 sectors in total
- Long-range Wakes last 20 turns, specified in input
- Coupled bunch mode growth rate can be re-constructed with the TBT, bunch-by-bunch data.
- Momentum info is required and the mode growth rate can be obtained by exponential fitting of the signal in Fourier space

$$z_{\mu} = \left(\frac{x_{\mu}}{\sqrt{\beta_x}} - i\left(\sqrt{\beta_x}p_{x,\mu} + \frac{\alpha_x}{\sqrt{\beta_x}}x_{\mu}\right)e^{-i\frac{2\pi\nu_x(\mu-1)}{M}},\right)$$

 Coupled bunch mode growth rate can be found analytically as well

section	number	Length / m	gaps / mm	β_x / m	β_x / m	conductivity σ / $\Omega^{-1}m^{-1}$	z_0 / m
5 mm ID	4	5	5	3.14	3.14	2.5E+7	1.74E-5
6 mm ID	17	5	6	3.14	3.14	2.5E+7	1.97E-5
7 mm ID	5	10	7	6.08	6.08	2.5E+7	2.18E-5
ring	1	2149	10	2.71	4.25	5.9E+7	2.08E-5

TABLE II. Simplified resistive wall sections in Petra4.

$$(\Omega^{\mu} - \omega_{\beta})_{\perp} = -i\frac{MNr_{0}c}{2\gamma T_{0}^{2}\omega_{\beta}} \sum_{p=-\infty}^{\infty} Z_{1}^{\perp} [\omega_{\beta} + (pM + \mu)\omega_{0}]h(\omega - \omega_{\xi}, \sigma_{t})$$
$$(\Omega^{\mu} - \omega_{s})_{\parallel} = i\frac{MNr_{0}\eta}{2\gamma T_{0}^{2}\omega_{s}} \sum_{p=-\infty}^{\infty} (\omega_{s} + pM\omega_{0} + \mu\omega_{0})Z_{0}^{\parallel} [\omega_{s} + pM\omega_{0} + \mu\omega_{0}]h(\omega, \sigma_{t})$$

Coupled bunch mode in transverse

- Petra-IV timing operation mode, 80 bunches, 80 mA
 - 3840=80*(1b+47g)
- Two examples
 - RW
 - RLC, Rs=5E+9 ohm/m/m, Q=1E+3,
 fr=4.986E+8 Hz
- Coupled bunch mode growth rate shows good agreement between simulation and analytical prediction.

- Longitudinal coupled bunch instability.
- Bunch length and centeriod variation.
- Treated in phasor frame. (P. B. Wilson)

Vg

Cavity feedback

С

Vc=Vg+Vb

٢Ş

Vb

R

Beam dynamics

lb

Ref. P. Wilson, "Fundamental-mode rf design in e+ e- storage ring factories

Zcav

3rd harmonic cavity

Table 3: Nom	inal settings	of the	double	RF	system	in	the	H6BA	lattice.
--------------	---------------	--------	--------	----	--------	----	-----	------	----------

Parameter	Symbol	Main RF $(n = 1)$	Harmonic RF $(n = 3)$	
RF Freq. (Hz)	f _{rf,n}	4.997E+8	1.499E+9	
RF Freq. (Hz)	$\omega_{rf,n}$	$2\pi f_{rf,n}$	$2\pi f_{rf,n}$	
		D Closed		
Ref. Voltage (V)	V _{c,n}	8E+6	2.223E+6	
Synchronous Phase (rad)	ϕ_n	2.516	-0.237	
	1	D Open		
Ref. Voltage (V)	V _{c,n}	8E+6	2.625E+6	
Synchronous Phase (rad)	ϕ_n	2.954	-0.063	

Vset

lg

Feedback filter

 $\lg+\delta\lg$

 δ lg

- Have to self-consistent deal with the generator dynamics and beam dynamics
- For a given initial generator current Ig, Vg is tracked as a function of time.
- Beam induced voltage Vb is tracked in phasor

frame by:

$$\tilde{\mathbf{V}}_{\mathbf{b}}(t) = (\tilde{\mathbf{V}}_{\mathbf{b}}(t - \Delta t) + \tilde{\mathbf{V}}_{\mathbf{b0}}/2)] \exp(\alpha \Delta t), \quad \alpha = -\frac{1}{\tau_f}(1 - i \tan \Psi)$$

• Sample Vc at time n*Trf, generator current Ig

$$\delta \tilde{\mathbf{I}}_{\mathbf{g}}(nT_{rf}) = -\frac{1}{a_0} \sum_{i=1}^{N} a_i \delta \tilde{\mathbf{I}}_{\mathbf{g}}((n-i)T_{rf}) + \frac{1}{b_0} \sum_{j=0}^{M} b_j \delta \tilde{\mathbf{V}}((n-j)T_{rf})$$

$$\frac{d^2}{dt^2}\tilde{\mathbf{V}}(t) + \frac{\omega_r}{Q_L}\frac{d}{dt}\tilde{\mathbf{V}}(t) + \omega_r^2\tilde{\mathbf{V}}(t) = \frac{\omega_r R_L}{Q_L}\frac{d}{dt}\tilde{\mathbf{I}}(t),$$

- Petra 4 double RF parameters
- Generator voltage Vg and beam induced voltage Vb are build up with given initial conditions.
- Beam goes into cavity at the 5th turn.
- Bunches are assumed on axis and the instability is turned off.
- The red curve shows the cavity voltage Vc beam would sample.

- Brightness mode operation
 - 3840=80*(20*(1b+1g)+8g)
- Set one macro-particle per bunch
- Longitudinal coupled bunch instability
 - turned off in simulation
- Once cavity voltage and phase bunch sampled, bunch profile, center and bunch length can be found by:

$$\begin{split} \rho(z) &= \rho_0 \exp \left(-\frac{1}{2\pi h f_0 \alpha_c \delta^2} H_1(z) \right), \\ H_1(z) &= \frac{\omega_0 e}{2\pi \beta^2 E} \frac{2\pi h f_0}{\beta c} (Re \sum_n \int_0^z \tilde{\mathbf{V}}_{\mathbf{c},\mathbf{n}}(z') dz' + \int_0^z \int_{z''}^\infty e\rho(z') W_0'(z''-z') dz' dz''). \end{split}$$

Transient beam loading effect (soft bunches)

- Brightness mode operation.
 - 3840=80*(20*(1b+1g)+8g)
- Set 1000 macro-particle per bunch
 - Bunches are histogram into bins
 - Bin-by-bin then bunch-by-bunch tracking
- Longitudinal coupled bunch instability
 - turned off in simulation
- Bunch length and center info are directly from simulation.
- If turn off the instabilities, it agrees with one-particle

model simulation.

Transient beam loading effect (soft bunches with instability)

- Filling pattern:
 - 3840=2*(100*(1b+9g)+920g)
- Set 1000 macro-particle per bunch
 - Bunches are histogram into bins
 - Bin-by-bin then bunch-by-bunch tracking
- Longitudinal coupled bunch instability
 - turned on in simulation
- Vb and Vg obtained by CETASim and Elegant agree well.
- Bunch length and center are also agrees (not shown here)

Beam-ion effect (single ion)

• Bassetti-Erskine formula for direct space charge effect between ions and

electrons

- Brightness mode 3840=80*(20*(1b+1g)+8g)
- CO, 300K, 1nTor
- Bunch oscillation is self-saturated, within10 rms bunch size
- In the medium current range (30mA to 70mA) accumulate the ions most.
- Medium current give the largest growth rate.
- Ion profile is not Gaussian.

DESY-TEMF-Collaboration

Beam-ion effect (multi-ions)

- self-saturation around 5 rms beam size
- In the medium current range (30mA) accumulate the most ions
- Lighter ions are hardly trapped
- The largest growth rate is roughly 300(1/s) around 20mA.

	H ₂	CH ₄	СО	CO ₂
Initial	0.43	0.08	0.36	0.13

Bunch-by-Bunch Feedback system

Definition and simulation model of the FIR filter:

$$\Theta_{x,n} = K_x \sum_{k=0}^{N} a_{k,x} x_{n-k}, \qquad \left[\begin{pmatrix} x_{n+1} \\ x'_{n+1} \\ y_{n+1} \\ y'_{n+1} \end{pmatrix} \right] = M_0 \left[\begin{pmatrix} x_n \\ x'_n \\ y_n \\ y'_n \end{pmatrix} + \begin{pmatrix} 0 \\ \Theta_{x,n} \\ 0 \\ \Theta_{y,n} \end{pmatrix} \right]$$

T. Nakamura, http://accweb.spring8.or.jp/~nakamura/reports/Feedback_ with_FIR_Filter_draft1.pdf.

The TDLSF method is applied for FIR filter design

Frequency and phase response of the designed 10 taps filter, target tunes are 0.18 and 0.27

Bunch-by-Bunch Feedback system (transverse)

- Timing mode option
 - 3840=80*(1b+47g)
- RW long range wakes.
- Coupled bunch instability can not damped by SR damping
- The preliminary 10 taps FIR filter feedback.
 - Target tunes are 0.18 and 0.27
- Feedback is turned on between 1000~1300 and 1600 to 3000 turns.
- All 80 bunches all well damped by the feedback

Summary and outlook

- Modules for single and coupled bunch collective effect simulation are available
- Well benchmarked with analytical model and Elegant results
- Coupled bunch instability mitigation by bunch-by-bunch feedback
- We are working on cavity feedback model for transient beam loading compensation
- Code parallelization in the future.
- Welcome to download and feel free to use, I am very glad to explain the details. https://github.com/ChaoLiIHEP/CETASIM

Thanks for your attention!