Energy-Binning Fast Multipole Method for Electron Injector Simulations

S. A. Schmid, E. Gjonaj, H. De Gersem Institute for Accelerator Science and Electromagnetic Fields, TU Darmstadt

DESY-TEMF-CANDLE Meeting, **Autumn 2021**

Zoom Meeting, 21.09.2021

Modeling the DESY-PITZ Injector

- Photoinjector: 1.6 cells, $E_G = 60.58 \text{ MV/m}$ field amplitude at $f_G = 1.3 \text{ GHz}$
- Electron beam: $Q_0 = 1nC$ bunch charge, $E_0 = 17.1$ MeV injection energy

\Rightarrow Requires space charge model for beam with energy dispersion

- Particle-particle method (PPM) computationally inefficient
- Collective evaluation improves efficiency

2. Approximate far field interactions

- Categorization of interactions with tree structure
 - Domain decomposition into nodes based on particle density
 - Successive refinement until $N_n < N_0$ particles per leaf node

- Far field approximation of node n with multipole expansion of order l_0
 - Spherical moments $M_{l,m}^n = \sum_j \frac{q_j}{4\pi\epsilon_0} F_{l,m}(x_n x_j)$
 - Solid harmonics $F_{l.m}(\mathbf{x}) \propto r^l P_l^m(\cos \vartheta) e^{im\varphi}$

Maximum onder $l_0 = 6$

Particles in Tree Node

TECHNISCHE UNIVERSITÄT DARMSTADT

Position x

De Piatemiaf of preex hoateon

Check for each node n interactions with surrounding nodes n'

Multipole to Local (M2L) **Field Approximation**

21.09.2021 | TU Darmstadt | Fachbereich 18 | Institute for Accelerator Science and Electromagnetic Fields | Steffen Schmid | 6

TECHNISCHE UNIVERSITÄT DARMSTADT

Particle to Particle (P2P) or Level Refinement

Communication of multipole moments between tree levels

Towards Parent Nodes (M2M)

TECHNISCHE UNIVERSITÄT DARMSTADT

Towards Child Nodes (L2L)

Space Charge Interaction Model

- Quasi electrostatic (QES) model for beams with $\beta'(t') \approx \beta_0$
 - Transformation to co-moving coordinates $(c_0 \tilde{t}, \tilde{x})$ of relativistic beam

- Transformation to laboratory coordinates $(c_0 t, x)$

$$\boldsymbol{E}(\boldsymbol{x}) = \gamma_0 \, \widetilde{\boldsymbol{E}}(\boldsymbol{x}) \, - \frac{\gamma_0^2 \left[\boldsymbol{\beta}_0 \, \widetilde{\boldsymbol{E}}(\boldsymbol{x})\right]}{\gamma_0 + 1} \, \boldsymbol{\beta}_0 \quad \text{and} \quad \boldsymbol{B}(\boldsymbol{x}) = \boldsymbol{B}(\boldsymbol{x}) \, \boldsymbol{B}($$

TECHNISCHE UNIVERSITÄT DARMSTADT

$\tilde{\varrho}(\tilde{x}, \tilde{y}, \tilde{z}) = \varrho(x, y, \gamma_0 z)/\gamma_0$

$\boldsymbol{x} = \boldsymbol{\beta}_0 / c_0 \times \boldsymbol{E}(\boldsymbol{x})$

Space Charge Interaction Model

Field Deviation at Photocathode Electron Beam at Photocathode

- Systematic field error during beam generation
 - Single particle energy γ significantly different from mean energy γ_0
 - Quasi-electrostatic interaction model inappropriate if $\gamma \neq \gamma_0$
- Energy binning with $\gamma_b = \gamma_1, \dots, \gamma_B$ compensates systematic error

Energy-Binning Fast Multipole Method

- Separate tree structure for each energy bin γ_h
 - Nodes for source ($\gamma \approx \gamma_1$) and target ($\gamma_2 \leq \gamma \leq \gamma_B$) particles
 - Modified refinement criterion $N'_0 = N_0 / \sqrt{B}$ reduces near field operations
 - Branch filtering reduces far field operations

Energy-Binning Fast Multipole Method

- Field approximation converges with bin number B
 - Larger effect for beam with phase space correlation $\rho(z, p_z) = 1$
 - Moderate number of energy bins $B \approx 6$ sufficient
- Energy-binning FMM conserves O(N) complexity

Energy-Binning Fast Multipole Method

- Optimized tree structure improves numerical efficiency
 - Large #M2L for $\rho(z, p_z) = 1$ and conventional tree
 - Large #P2P for $\rho(z, p_z) = 0$ and conventional tree
 - Optimized tree structure balances #M2L and #P2P
 - Energy-binning FMM particularly suitable for injector simulation ($\rho \approx 1$)

Energy Binning FMM

- Numerical properties
 - Runtime $t_{FMM}^B \propto k B$ and optimized tree facilitates k < 1
 - Spatial decoupling of trailing and leading particles reduces runtime
- Small number of energy bins sufficient to compensate systematic error (e.g. B = 5 suppresses artificial cathode current growth in DC injector)

21.09.2021 | TU Darmstadt | Fachbereich 18 | Institute for Accelerator Science and Electromagnetic Fields | Steffen Schmid | 14

Modeling the DESY-PITZ Injector

Validation Study

Application for Injector Modeling

- Validation of energy binning FMM simulation
 - B = 5 energy bins reproduce results of electromagnetic LW model
 - Space charge interaction increases slice emittance at rear end of beam
- Numerically efficient FMM applicable for large N simulation studies

S. A. Schmid, et al., "Energy-Binning [...] Injector Simulations", submitted in Proceedings of the 12th IPAC (2021) 21.09.2021 | TU Darmstadt | Fachbereich 18 | Institute for Accelerator Science and Electromagnetic Fields | Steffen Schmid | 15

Conclusions

Energy-Binning FMM for Beam Dynamics Simulation

- Meshfree modeling for large macroparticle ensembles $N \sim 10^7$
- Energy-binning improves QES space charge interaction model
- QES model underestimates interactions between the trailing particles
- Energy-binning FMM with B = 5 approximates Liénard-Wiechert results

TECHNISCHE UNIVERSITÄT DARMSTADT

sembles N ~ 10⁷ interaction model een the trailing particles s Liénard-Wiechert results

References

- L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations", 1. in J. Comp. Phys. **73**.2 (1987)
- 2. G. Fubiani, et al., "Space Charge Modeling of Dense Electron Beams with Large Energy Spreads", in PRAB **9**.6 (2006)

