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When we started to design BC chicanes for FELs in the 90s we recognized that the 
models

magnet optics,
geometrical and resistive wakes and
“space charge” (SC)

were not sufficient to describe the beam dynamics accurately enough.

As FEL processes were under discussion, the term
“coherent synchrotron radiation” (CSR)

was close at hand, and it was now commonly used for additional electromagnetic 
effects in BC chicanes elsewhere in beamlines.

The term got an additional scope.  Worse, this term is now used for two things:
* in the original sense for coherent synchrotron radiation, 
* for (non-specific) EM effects in beamlines which are not "wakes" or "SC".

My goal is not to calculate CSR, but to calculate beam dynamics more precisely. To 
avoid misunderstandings I will try to use the term CC for continuous charge and the 
resulting fields. The two Cs may also stand for continuous and coherent.

One effect that is definitely not explained by CSR is compressions work.

CSR?





R = 1 cm

z = 200m

r = 100m

q = 1 nC

z = 20m

Wtot = 0.107 mJ Wtot = 1.065 mJWtot = 0.958 mJ

CSR in the last arc of Zeuthen benchmark BC (steady state assumption):
R0 = 10 m, z = 20m, L = 0.5 m → P = 375 kW, P L/c0 = 0.625 mJ

Compression Work
Gedankenexperiment: “if we could smoothly compress a bunch”
f.i. weak linear velocity chirp, shielding by small PEC pipe

field energy =

field energy + kinetic energy =const

→ particles are decelerated/accelerated during compression/anti-compression
this effect is reversible, the effects is  not small (for benchmark case)



SC?

in adiabatic compression, the effect seems to be a pure “SC” effect

compression in BCs is not adiabatic, build up time ~ /2 >> chicane dimensions

doubts about tracking programs tracking programs using Poisson approaches:
even adiabatic processes can be calculatet incorrectly; compare: “Two Poisson 
Approaches” DESY-TEMF, Aug. 2018

Radiation and Space Charge Forces

2D approach in accelerator coordinates
I would like to follow this approach and make it more generally usable.



Other Approaches

Methods with Lienard-Wiechert Solutions

Wake-Like Approaches

it is a special case of retarded source solutions; ret. solutions naturally satisfy free 
space boundary conditions

not directly applicable to continuous distributions

problems with near fields (f.i. GPT)

problems with ultra-fast time dependency for point particles ~R/(c3) at high energy

it is a 2d- or 3d-generalization of the well known 1d CSR approach:
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Reference Methods ???



2D Approach in Accelerator Coordinates
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2D approach

cartesian coordinates and accelerator coordinates
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to calculate EM fields we need the charge- and current density in space and time

( ) ( )0 0, S SSf S f = TX Xlinear optics without self effects

this is the basic assumption !!!
(for the beginning I want to estimate self-effects by perturbation theory)
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and a coordinate transformation (X,Y,t  x,s,S)



Retarded Potentials
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direct integration in polar coordinates

distribution of retarded sources for a particular observer (X,Y,t)

observer is in the origin
(outside of the distribution)

gaussian source distribution
5  integration range



origin =  observer position

Example: Zeuthen benchmark chicane:
(2002)

retarded source distribution:

most of the bunch looks like a line charge - mostly



shape of retarded source depends on observer!
f.i. same observer time, but different observer position:

coordinate system always centered to observer



Retarded Source Integral

derivatives of V and A to calculate E and B

mathematical transformations (dummy parameters)

adaptive step width control
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Lienard-Wiechert like kernel functions
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Retarded Source Integral

derivatives of V and A to calculate E and B

mathematical transformations (dummy parameters)

adaptive step width control
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transient longitudinal field: comparison with an older calculation1st Test

head



~ Zeuthen BC, 5GeV, free space
averaged longitudinal field


