Beam Loading and Signal Detection for a TESLA 1.3 GHz Cavity

W. Ackermann, W.F.O. Müller, H. De Gersem Institute for Accelerator Science and Electromagnetic Fields (TEMF), TU Darmstadt

Outline

- Motivation
- Computational Modeling
 - Field Excitation
 - Field Extraction
- Numerical Results
 - Beam-Loading Simulations
 - Signal Mixing and Filtering
 - Magnitude and Phase Measurement
- Summary / Outlook

Outline

Motivation

- Computational Modeling
 - Field Excitation
 - Field Extraction
- Numerical Results
 - Beam-Loading Simulations
 - Signal Mixing and Filtering
 - Magnitude and Phase Measurement
- Summary / Outlook

Motivation

Beam Loading of a 9 Cell TESLA 1.3 GHz Cavity Comparison of theory with measurement

Motivation

SRF Cavity Regulation

Source: "Precision Control of SRF Cavities", Sven Pfeiffer, 15.11.2018

Outline

Motivation

- Computational Modeling
 - Field Excitation
 - Field Extraction
- Numerical Results
 - Beam-Loading Simulations
 - Signal Mixing and Filtering
 - Magnitude and Phase Measurement
- Summary / Outlook

Beam Loading Simulations in Time Domain
 CST Model

Beam Loading Simulations in Time Domain

Excitation Signal

2e-10

Beam Loading Simulations in Time Domain CST Model

Beam Loading Simulations in Time Domain

Voltage Monitors

Outline

- Motivation
- Computational Modeling
 - Field Excitation
 - Field Extraction
- Numerical Results
 - Beam-Loading Simulations
 - Signal Mixing and Filtering
 - Magnitude and Phase Measurement
- Summary / Outlook

Pickup Signal for Single Pulse Excitation

Pickup Signal for Single Pulse Excitation

Pickup Signal for Single Pulse Excitation

SRF Cavity Regulation

Source: "Precision Control of SRF Cavities", Sven Pfeiffer, 15.11.2018

Signal after Mixer for Multiple Pulse Excitation

Signal after Mixer for Multiple Pulse Excitation

SRF Cavity Regulation

Source: "Precision Control of SRF Cavities", Sven Pfeiffer, 15.11.2018

Low Pass Filter (Mini-Circuits LFCN-1500)

Low Pass Filter (Mini-Circuits LFCN-1500)

Low Pass Filter (Mini-Circuits LFCN-80)

Low Pass Filter (Mini-Circuits LFCN-80)

Low Pass Filter (Mini-Circuits LFCN-1500 & LFCN-80)

Signal after Filters for Multiple Pulse Excitation

Signal after Filters for Multiple Pulse Excitation

SRF Cavity Regulation

Source: "Precision Control of SRF Cavities", Sven Pfeiffer, 15.11.2018

Signal after Filters for Multiple Pulse Excitation

Signal after Filters for Multiple Pulse Excitation

Lossy Eigenvalue Simulations (Waveguide Ports)
 Cem3D

Lossy Eigenvalue Simulations (Waveguide Ports) Cem3D

Lossy Eigenvalue Simulations (Field Distribution)

Lossy Eigenvalue Simulations

- Cem3D

$$U_4 = \sqrt{2 P_4 Z_4} = 0.825 V$$

 $P_4 = 6.402 \text{ mW}$

Scaling

$$\frac{\Delta W}{U_4} = \frac{2.877 \text{ MeV}}{0.825 \text{ V}} = 3.489 \frac{\text{MeV}}{\text{V}}$$

Beam Loading for Multiple Pulse Excitation

- Beam loading based on a point charge

$$\Delta W_0 = \frac{e_0 \, q_0 |\underline{U}_{\nu}|^2}{2W} = e_0 \, q_0 \, \omega \, \frac{R}{Q}$$

= 0.0041 MeV for
$$q_0 = 1 \text{ nC}, f = 1.3 \text{ GHz}, \ \frac{R}{Q} = 506.8 \Omega$$

- Gaussian current distribution

$$\Delta W = \int_{-\infty}^{\infty} \vec{F} \cdot \vec{e_z} \, \mathrm{d}z = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \lambda \, E_z \, \mathrm{d}z \, \mathrm{d}z' = U_0 \int_{-\infty}^{\infty} \lambda \, e^{i\frac{\omega}{c}z} \, \mathrm{d}z = \Delta W_0 \, e^{-\frac{1}{2}\left(\frac{\omega\sigma}{c}\right)^2}$$

 $= \Delta W_0 \ 0.963563$ for $\sigma = 10 \text{ mm}$

Beam Loading for Multiple Pulse Excitation

Beam Loading for Multiple Pulse Excitation

Beam Loading for Multiple Pulse Excitation

Outline

- Motivation
- Computational Modeling
 - Field Excitation
 - Field Extraction
- Numerical Results
 - Beam-Loading Simulations
 - Signal Mixing and Filtering
 - Magnitude and Phase Measurement
- Summary / Outlook

Summary / Outlook

- Summary
 - Beam loading simulations in time domain (TD)
 - Signal mixing and filtering
 - Magnitude and phase determination
 - Beam loading simulations in frequency domain (FD)
 - Consistency between TD and FD approach: 10% error not reproducible in the simulations
- Outlook
 - Step by step comparisons to measurements

