Experience with beam-transient LLRF calibration in XFEL

Nick Walker - DESY

02.11.2020 DESY-TEMF collaboration meeting

Rationale and Goals

- No direct ('classical') method of calibrating cavity probe signals in XFEL
- Calibration chain is complex and can change
 - In particular phase
- Understanding maximum energy performance in XFEL prompted more attention on LLRF calibration
- Solution: use beam-induced transient in cavities as calibration tool.
 - Beam-based calibration (BB-cal)

Rationale and Goals

- No direct ('classical') method of calibrating cavity probe signals in XFEL
- Calibration chain is complex and can change
 - In particular phase
- Understanding maximum energy performance in XFEL prompted more attention on LLRF calibration
- Solution: use beam-induced transient in cavities as calibration tool.
 - Beam-based calibration (BB-cal)

- Basic method has been used for many years
 - Developed for FLASH, now used in XFEL
- Current goal is to develop a **robust**, **reproducible** and **non-invasive** approach to BB cal
 - Original FLASH methods are slow and invasive
- Automation tools now provide data acquisition for entire linac in <2 minutes
- Method can be routinely used during operations with little impact
- Used to monitor calibration state.

Approach 1

- Basic premise (Assumptions)
 - Assumption 1: Beam-induced transient voltage is the same in all cavities

Valid for short pulses (t<<tau) for ~on-resonance cavities

 Assumption 2: Beam spectrometer absolute energy measurement at end of linac is accurate to ~1%

Based on 'expert' opinion/ experience (but not verified)

First step: measure beam transient in all cavities

Approach 2: Beam Transient Measurement

simulated response in a TESLA cavity

Typical transient amplitudes: 100 kV

In principle beam transients should be independent of the applied RF

Approach 3: Analysis

Understanding errors (random and systematic)

- S/N improved by averaging
 - Typically 300 consecutive pulses (30 seconds)
- Careful propagation and analysis of statistical errors
 - In general, all error bars shown are ±2 std error
 - Derived from averaging
- Understanding **systematic errors** is the remainder of this presentation.

Calibration Algorithm

Procedure

- Measure beam transients simultaneously in all cavities
 - Short beam pulse (~200 bunches, t<100us)
 - LLRF system feedback and beam-loading compensation disabled during data acquisition
 - Simultaneously measure bunch energy at end of linac
 - Beam Energy Server (spectrometer)
- Post-DAQ analysis
 - Reconstruct beam transients
 - including statistical errors from averaging
 - Calculate probe signal complex calibration factors **F** to
 - Make all transient amplitudes equal
 - Zero transient phase (beam phase)
 - Apply *F* to probe recorded probe signals, and calculate linac energy gain.
 - Apply global scale factor G to make calculate energy gain equal to measured beam energy

Example transient measurement

Error bars ±2 std. errors

Understand systematic errors

- Statistical error can be arbitrarily reduced by averaging more pulses
- Simulations indicate that beam-RF phase and cavity detuning influence transient fits
 - Systematic errors

Dataset	Energy	RF Voltage	RF Phase	Pulse charge	Pulse duration
	GeV		Degree	nC	μs
1	14.0	Low	22	51	89
2	14.0	High	44	29	67
3	17.6	High	0	30	67
4	14.0	High	44	29	67

High is typically 100MV per station higher than **Low**

8

• Four datasets taken on 19.10.2020

Beam transient amplitudes

Off crest datasets show correlation with RF phase

transients have been normalised to 50.9 nC

Transient phase - RF phase correlation

Transient Amplitude — comparison to theory

$$V_{tran} \approx \pi f_0 Q_b \left(\frac{r}{Q}\right) \left(1 - \frac{1}{2}\pi f_0 \Delta t / Q_L\right)$$

after calibration normalisation

Dataset	Energy	RF Voltage	RF Phase	Pulse charge	Pulse duration	Vtran (theory)	Vtran (meas)	Rel. Diff.
	GeV		Degree	nC	μs	MV	MV	%
1	14.0	Low	22	51	89	0.21	0.19	-9 ±1
2	14.0	High	44	29	67	0.12	0.10	-15 ±3
3	17.6	High	0	30	67	0.12	0.11	-6 ±2
4	14.0	High	44	29	67	0.12	0.10	-14 ±2

Always systematically lower Historical value: ~ -10% Statistical Errors are ~ small

— Data very reproducible for a given RF setup

Dominated by Systematic Errors

Why?

Data stability

RF stability differences or other parameters differences

- Phase stability OK (<1° rms)
- Amplitude stability OK (<0.2 MV/m rms)
- Detuning all OK (and similar)
- Delta detuning over beam pulse:

Beam

Summary

- Fast quasi-non-invasive data acquisition
 - Allows routine data taking for monitoring
- For a given RF set up, data is very reproducible
 - Random errors are small for 300-point averaging
 - Useful for checking stability of calibration over time
- Absolute calibration requires work
 - Systematic errors dominate
 - Change in RF working point can affect results by tens of per cents
 - Simulations (not discussed) suggest systematic effects are smaller by up to factor of 10!
- Next steps
 - Re-check calculations for errors and consistency
 - Return to simulations to try and understand observed systematics
 - Take more data at higher charge at different RF phase.
 - Include 'beam off' data for direct subtraction method

Summary

- Fast quasi-non-invasive data acquisition
 - Allows routine data taking for monitoring
- For a given RF set up, data is very reproducible
 - Random errors are small for 300-point averaging
 - Useful for checking stability of calibration over time
- Absolute calibration requires work
 - Systematic errors dominate
 - Change in RF working point can affect results by tens of per cents
 - Simulations (not discussed) suggest systematic effects are smaller by up to factor of 10!
- Next steps
 - Re-check calculations for errors and consistency
 - Return to simulations to try and understand observed systematics
 - Take more data at higher charge at different RF phase.
 - Include 'beam off' data for direct subtraction method

Thank you for your attention

Probe calibration vs current VS.CAL (LLRF station calibration factors)

Consistency

Datasets 2 and 4 (same RF settings)

error

Calibration method - sensitivity to tune state and relative beam phase

Simulation including random errors and LFD

