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Rationale and Goals

• No direct (‘classical’) method of calibrating cavity 
probe signals in XFEL 

• Calibration chain is complex and can change 

• In particular phase 

• Understanding maximum energy performance 
in XFEL prompted more attention on LLRF 
calibration 

• Solution: use beam-induced transient in cavities 
as calibration tool. 

• Beam-based calibration (BB-cal)
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Rationale and Goals

• No direct (‘classical’) method of calibrating cavity 
probe signals in XFEL 

• Calibration chain is complex and can change 

• In particular phase 

• Understanding maximum energy performance 
in XFEL prompted more attention on LLRF 
calibration 

• Solution: use beam-induced transient in cavities 
as calibration tool. 

• Beam-based calibration (BB-cal)

• Basic method has been used for many years 

• Developed for FLASH, now used in XFEL 

• Current goal is to develop a robust, reproducible and 
non-invasive approach to BB cal 

• Original FLASH methods are slow and invasive 

• Automation tools now provide data acquisition for 
entire linac in <2 minutes  

• Method can be routinely used during operations with 
little impact 

• Used to monitor calibration state.
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Approach 1

• Basic premise (Assumptions) 

• Assumption 1: 
Beam-induced transient voltage is the same in 
all cavities 

• Assumption 2: 
Beam spectrometer absolute energy 
measurement at end of linac is accurate to ~1%

Valid for short pulses (t<<tau) for 
~on-resonance cavities

Based on ‘expert’ opinion/
experience 
(but not verified)

First step: measure beam transient in all cavities
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Approach 2: Beam Transient Measurement
simulated response in a TESLA cavity
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Typical transient amplitudes: 100 kV In principle beam transients should be 
independent of the applied RF
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Approach 3: Analysis

• S/N improved by averaging 

• Typically 300 consecutive pulses 
(30 seconds) 

• Careful propagation and analysis of 
statistical errors 

• In general, all error bars shown 
are ±2 std error 

• Derived from averaging 

• Understanding systematic errors is 
the remainder of this presentation.

Understanding errors (random and systematic)
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Calibration Algorithm

• Measure beam transients simultaneously in all cavities 

• Short beam pulse (~200 bunches, t<100us) 

• LLRF system feedback and beam-loading 
compensation disabled during data acquisition 

• Simultaneously measure bunch energy at end of linac 

• Beam Energy Server (spectrometer) 

• Post-DAQ analysis 

• Reconstruct beam transients 

• including statistical errors from averaging 

• Calculate probe signal complex calibration factors F to  

• Make all transient amplitudes equal  

• Zero transient phase (beam phase) 

• Apply F to probe recorded probe signals, and 
calculate linac energy gain. 

• Apply global scale factor G to make calculate energy 
gain equal to measured beam energy

Procedure

Example transient measurement
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Understand systematic errors

• Statistical error can be arbitrarily 
reduced by averaging more pulses 

• Simulations indicate that beam-RF 
phase and cavity detuning influence 
transient fits 

• Systematic errors 

• Four datasets taken on 19.10.2020

Dataset Energy RF Voltage RF Phase Pulse 
charge

Pulse 
duration

GeV Degree nC µs

1 14.0 Low 22 51 89

2 14.0 High 44 29 67
3 17.6 High 0 30 67
4 14.0 High 44 29 67

High is typically 100MV per 
station higher than Low
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Beam transient amplitudes
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Off crest datasets show correlation with RF phase
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Transient amplitude - phase correlation
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Transient amplitude - phase correlation
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Transient amplitude - phase correlation
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Transient amplitude - phase correlation
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Transient phase - RF phase correlation
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• Lower charge dataset (2,3 & 4) 

show broader distributions
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Transient Amplitude — comparison to theory

Vtran ≈ π f0Qb ( r
Q ) (1 −

1
2

π f0Δt /QL)
Dataset Energy RF Voltage RF Phase Pulse 

charge
Pulse 

duration
Vtran 

(theory)
Vtran 

(meas)
Rel. Diff.

GeV Degree nC µs MV MV %

1 14.0 Low 22 51 89 0.21 0.19 -9 ±1

2 14.0 High 44 29 67 0.12 0.10 -15 ±3
3 17.6 High 0 30 67 0.12 0.11 -6 ±2
4 14.0 High 44 29 67 0.12 0.10 -14 ±2

Always systematically lower 
Historical value: ~ -10%

after calibration normalisation
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Statistical Errors are ~ small 

— Data very reproducible for a given RF setup 

Dominated by Systematic Errors 

Why?
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Data stability

• Phase stability - OK (<1° rms) 

• Amplitude stability - OK (<0.2 MV/m rms) 

• Detuning - all OK (and similar)  

• Delta detuning over beam pulse:

RF stability differences or other parameters differences
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Raw transient fits
Example A11 M1 C7

probe voltage trace 

from  t = beam start - 20us 
to  t = beam end + 20us
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CF simulation from slide 4 



Summary
• Fast quasi-non-invasive data acquisition 

• Allows routine data taking for monitoring 

• For a given RF set up, data is very reproducible 

• Random errors are small for 300-point averaging 

• Useful for checking stability of calibration over time 

• Absolute calibration requires work 

• Systematic errors dominate 

• Change in RF working point can affect results by tens of per cents 

• Simulations (not discussed) suggest systematic effects are smaller by up to factor of 10! 

• Next steps 

• Re-check calculations for errors and consistency 

• Return to simulations to try and understand observed systematics 

• Take more data at higher charge at different RF phase. 

• Include ‘beam off’ data for direct subtraction method
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Probe calibration vs current VS.CAL (LLRF station calibration factors)
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Consistency
Datasets 2 and 4 (same RF settings)
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Calibration method - sensitivity to tune state and relative beam phase

Fitted phase vs true phase Fitted amplitude vs true phase

True amplitude
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error (%)



Calibration method - sensitivity to tune state and relative beam phase
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